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Resumo
A cada dia que passa os robôs estão ficando mais inteligentes e autônomos. Fazer
com que um robô aprenda uma nova tarefa sem ser necessário ter acesso à seu código
fonte desperta bastante interesse, pois traz benefícios como a redução de custos com
manutenção de programas e aumento da produtividade na indústria.

Sistemas baseados em Programação por Demonstração (Programming by Demons-
tration - PbD) têm como objetivo fazer com que um robô seja capaz de aprender e
reproduzir a atividade demonstrada, sem a reprogramação direta de seu código fonte,
ou seja, em PbD o robô deve se autoprogramar para se adequar à tarefa a ele imposta.
Algumas formas de PbD empregam câmeras, sensores e software complexo para que
o robô aprenda a partir da observação da tarefa, sem necessidade de um programador.
Diversamente, uma abordagemmais barata, faz uso de controles complexos (teaching
pendants) para programar o robô enquanto a tarefa é executada. Esta programação
exige que o programador seja especialista não apenas na tarefa a ser executada mas
tenha habilidade no uso do controle. Além disso, a introdução de imprecisões no mo-
mento da programação exige um maior tempo com o robô parado e sem produzir.

Neste trabalho, apresenta-se uma estratégia PbD baseada em teoria dos grafos para
programação de robôs sem recursos de sensoriamento. Esta estratégia tem duplo ob-
jetivo: a) permitir que usuários sem conhecimento de programação possam programar
robôs por meio de um joystick simples; e b) potencialmente reduzir o tempo de progra-
mação permitindo que o usuário forneça demonstrações de uma mesma tarefa para
mitigar imprecisões introduzidas pelo usuário ou pelo ambiente durante as demonstra-
ções.

Implementada em um manipulador robótico, 20 usuários diferentes experimentaram
a estratégia proposta na execução de uma mesma tarefa, porém com quantidades
diferentes de demonstrações. Como resultado, constata-se que o aumento do número
de demonstrações reduziu em até 76% o total de erros na execução da tarefa com um
tempo máximo de programação de 15 minutos. Desta forma, é possível observar que
a técnica proposta tem potencial para simplificar o treinamento de um robô pelo uso
de um mero joystick, sem necessidade de conhecimentos de programação baseada
em texto, além de potencialmente reduzir o tempo com o robô parado.

Palavras-chave: Programação por Demonstração, Robótica, Teoria dos Grafos.



Abstract
Every to day the robots are becoming more intelligent and autonomous. Making a robot
learn a new task without having to update its source code arouses great interest as it
brings benefits such as reduced costs with maintenance programs and increase pro-
ductivity in the industry.

Systems based on Programming by Demonstration PBD aims at making a robot able
to learn and perform the demonstrated activity without the direct reprogramming of its
source code, ie PBD robot should autoprogramar to suit the task he imposed. Some
forms of PBD employ cameras, sensors and complex software for the robot to learn
from observation of the task, without a programmer. By contrast, a cheaper approach
makes use of complex teaching pendants controls to program the robot while the task is
performed. This program requires that the programmer is an expert not only on the task
at hand but has the ability to control the use. Furthermore, introducing inaccuracies in
the time of programming requires a longer with the robot stopped and without producing.

In this paper, we present a PBD strategy based on graph theory for robots without
sensing capabilities programming. This strategy has a double purpose: a) allow users
without programming knowledge to program robots through a simple joystick; and b)
potentially reduce programming time by allowing the user to provide demonstrations
of the same task to mitigate inaccuracies introduced by the user or the environment
during the demonstrations.

Implemented in a robotic manipulator, 20 different users experienced the proposed
strategy in the execution of the same task, but with different amounts of demonstrations.
As a result, it is found that increasing the number of statements reduced by up to 76%
of the total errors in the task execution with a maximum time of 15 minutes schedule.
Thus, it can be seen that the proposed technique has the potential to simplify training
a robot by using a simple joystick, without the need for text-based programming skills,
and potentially reduce the time to stop the robot.

Keywords: Programing by demonstration, Robotics, Graph Theory.
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1 Introdução

Este Capítulo apresenta o problema abordado e os objetivos deste trabalho.
Primeiramente, procura-se contextualizar como as máquinas revolucionaram a indús-
tria como um todo, bem como mostrar a importância dos robôs quando inseridos em
linhas de produção, além de apresentar uma visão geral sobre a Programação por
Demonstração (Programming by Demonstration - PbD), que é o foco deste trabalho.
Neste capítulo também serão apresentados a justificativa e motivação para realização
do trabalho, assim como a organização do documento.

1.1 A importância da robótica
Desde a revolução industrial ocorrida na Europa emmeados do século XVIII, ati-

vidades repetitivas e cansativas nas linhas de montagem que eram desempenhadas
basicamente por seres humanos e suas pesadas ferramentas de trabalho, começa-
ram a ser realizadas por máquinas cada vez mais complexas. Os produtos deixaram
de ser manufaturados e passaram a ser maquino faturados, o que permitiu a produção
em massa, aumentando a oferta de produtos no mercado e reduzindo seus preços
(CAVALCANTE; SILVA, 2011). Também foi possível reduzir os altos custos com ca-
pital humano além do ganho significativo no tempo e na produtividade. A Revolução
Industrial teve grande relevância para a sociedade atual e principalmente para o sur-
gimento da revolução tecnológica vivida até os dias atuais. (CAVALCANTE; SILVA,
2011).

Com o avanço tecnológico ao longo dos anos, as fábricas se tornaram cada vez
mais automatizadas. Os robôs começaram a ser inseridos nas linhas de montagem e
braços robóticos que realizavam tarefas limitadas foram evoluindo e se tornando mais
versáteis e precisos, executando múltiplas tarefas, inclusive. A Fabricante de Automó-
veis Tesla, por exemplo, utiliza em sua fábrica em Fremont, Califórnia, robôs como os
ilustrados na Figura 1 que podem fazer até quatro tarefas: solda, rebites, colagem e
instalação de um componente (MARKOFF, 2012). Esta versatilidade dos robôs revolu-
cionou a forma de produção proporcionando ganhos significativos para os proprietários
de fábricas ao redor do mundo. Segundo os dados observados por (MARKOFF, 2012):
“esses equipamentos tendem a gerar grandes lucros a longo prazo, já que uma má-
quina com custo médio de 250 mil dólares substituindo dois empregados com salário
de 50 mil ao ano deve economizar 3,5 milhões ao fim de seus 15 anos de vida útil”.
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Figura 1 – Robôs da Fabricante de Automóveis Tesla em Fremont, Califórnia.

Fonte: Notícia do site Gizmodo/Austália1.

1.2 Programação por demonstração
Um robô é basicamente um conjunto de equipamentos integrados, composto

por hardware e software, que necessita ser programado para que consiga realizar uma
atividade útil para os seres humanos. Mesmo para executar a mais básica operação,
um robô precisa ter um software em execução. Este sistema tem como função moni-
torar os sensores do robô e acionar os seus motores fazendo com que ele se mova
dentro dos limites dos seus graus de liberdade.

Para (BIGGS; MACDONALD, 2003), a área relacionada especificamente à pro-
gramação de robôs pode ser dividida em Automatic programming (Programação au-
tomática) e Manual Programming (Programação Manual). Na primeira, não se tem
acesso direto ao código fonte que programa o robô. (BIGGS; MACDONALD, 2003)
destacam que ”esse tipo de sistema oferece pouco ou nenhum controle direto sobre
o código do programa que o robô irá executar [...], o código do robô é gerado a partir
de informação introduzida no sistema por uma variedade de formas indiretas”. Geral-
mente o robô permanece emexecução enquanto é programado, oferecendo então uma
programação online. Na programação manual, diferentemente, o usuário/programador
precisa criar o programa que o robô deve interpretar e, consequentemente, executá-lo
no robô para que adquira um comportamento. O robô não precisa estar presente en-
quanto é realizada a programação. No capítulo 2 serão apresentados mais detalhes
sobre cada categoria.

A forma mais comum de Programação automática chama-se Programming by
Demonstration. Esta abordagem permite que pessoas sem conhecimento formal em
programação possam efetivamente programar um robô para que realize uma atividade
útil em um curto intervalo de tempo e de forma intuitiva. PbD pode permitir que usuá-
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rios finais ensinem, por meio de demostrações, as tarefas que o robô deve executar
(FORBES et al., 2014). Toda a complexidade das numerosas linhas de código neces-
sárias para o treinamento do robô é completamente abstraída para um plano real e
observável, ou seja, onde o usuário consegue visualizar o robô fisicamente realizando
os movimentos. A necessidade de PbD será cada vez mais percebida no futuro, con-
forme afirma (EKVALL, 2005): “a próxima geração de robôs será colocada em nossas
casas e [...] a variedade de tarefas dos robôs nos ajudará significativamente e não será
possível pré-programar robôs para todas essas tarefas”.

Sistemas baseados em Programação por Demonstração, utilizam diversos mé-
todos como interface entre o usuário/programador e o robô para o qual se pretende
transmitir um comportamento. (TEIXEIRA, 2009) destaca os dispositivos e estratégias
que se pode usar em PbD, por exemplo, a fala, controles com botões, desenhos, ges-
tos entre outros.

Aplicações de PbD avançadas são fortemente dependentes da integração de
sensores internos e externos, como sensores de força/torque e visão (WAHL; THO-
MAS, 2002). Esses sensores são responsáveis por ser os “olhos” do robô e, a partir
deles, os robôs conseguem “enxergar” tanto a tarefa que está sendo demonstrada
quanto o ambiente em que está inserido. Porém em um cenário onde tais recursos
sensoriais complexos não são possíveis, pode-se fazer uso de controles complexos
denominados teach-pendants (como os que são ilustrados na Figura 2). Por estes con-
troles, um usuário especialista demonstra a tarefa posicionando o robô e programando
comandos simples como andar em linha, descrever um arco, ligar um atuador etc, que
correspondem aos movimentos a serem executados pelo robô para realizar a tarefa
(BIGGS; MACDONALD, 2003). Assim, o robô armazena em memória estes comandos
e os executa para reproduzir a tarefa.

1.3 Justificativa e motivação
Os manipuladores robóticos são recursos fundamentais nas fábricas por todo

o mundo e novos investimentos são feitos em pesquisas buscando melhorar ainda
mais essa tecnologia. A complexidade do software usado para comandar essas má-
quinas e a demanda crescente por robôs flexíveis e reprogramáveis têm aumentado a
necessidade por sistemas de programação por demonstração. (EKVALL, 2005). Sem
a utilização de um sistema baseado em PbD, para que máquinas realizem as tarefas
atribuídas a elas, faz-se necessária a contratação de profissionais especialistas em
programação de computadores e microcontroladores e a necessidade de uma forte
integração entre estes profissionais e a equipe de produção que conhece em detalhes
as tarefas que o robô deve executar. Estas exigências levam ao aumento de custos
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Figura 2 – Evolução dos teach-pendants

Fonte: (BOUCHARD, 2011) .

administrativos e de pessoal.

PbD simplifica esta tarefa de reprogramação do robô, permitindo que os profissi-
onais especialistas nas atividades de produção possam diretamente programar estas
máquinas (TEIXEIRA, 2009). Sistemas mais complexos de PbD utilizam numerosos
recursos de hardware, como sensores e câmeras, para comunicação entre o usuá-
rio/programador e o robô. Sem esses recursos o robô fica impossibilitado de observar
quais tarefas o usuário deseja transmitir a ele, bem como as características do ambi-
ente em que está inserido.

Os teach-pendants permitem que os usuários programem os robôs, fornecendo
as coordenadas e comandos específicos para realização dos movimentos necessários
para execução da tarefa. São exemplos de comandos: descreva um movimento em
linha desta coordenada a esta outra, descreva um movimento em arco passando por
estas coordenadas etc. O sistema armazena esses comandos e, quando solicitado,
reproduz os movimentos. Caso movimentos indesejados sejam transmitidos, o usuário
tem a possibilidade de apagar os comandos e coordenadas e em seguida fornecer
outras, ainda no momento da programação.

O PbD baseado em teach-pendants permite o uso de robôs mais simples, isto
é, que não precisam de sensores, câmeras e software mais complexo. Por outro lado,
exige um profissional que seja especialista tanto no uso do controle para programação
do robô quanto na tarefa a ser executada. Além disso, a presença de imprecisões na
execução da tarefa que passem desapercebidas pelo programador no momento da
programação só serão detectadas no momento dos testes, o que exigirá um maior
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tempo com o robô afastado da linha de produção, para reprogramação.

Neste trabalho, apresenta-se uma abordagem que utiliza técnicas da teoria dos
grafos para realizar PbD de robôs. Esta abordagem pretende, ao mesmo tempo, re-
duzir o tempo de programação total, removendo a necessidade de reprogramações, e
permitir que usuários sem conhecimento de programação possam programar o robô
por meio de controles simples. A ideia básica desta abordagem é permitir que o usuá-
rio/programador, utilizando um joystick, possa oferecer diversas demonstrações da
mesma tarefa e que o robô aprenda os movimentos demonstrados por seu usuário
mesmo quando os movimentos são repetidos com imprecisão. De posse do conjunto
de demonstrações, o sistema PbD extrai deste conjunto uma representação que reflete
a melhor maneira de reproduzir a tarefa pretendida, mitigando imprecisões tanto das
demonstrações fornecidas pelo usuário quanto do próprio robô.

1.4 Objetivos
O objetivo principal deste trabalho é desenvolver uma abordagem para realizar

PbD para a programação de robôs. Utilizando técnicas de grafos, a abordagem pro-
posta recebe um determinado número de demonstrações diretamente do usuário por
meio de um joystick, e permite inferir a tarefa demonstrada mitigando imprecisões, sem
que seja necessário ter acesso ao código fonte do programa do robô. Como objetivos
específicos pretende-se:

• Definir um modelo de base de conhecimento para o robô para armazenamento
dos movimentos do robô;

• Descrever, em detalhes, um algoritmo para inferência da tarefa a partir do modelo
de memória; e

• Implementar e avaliar os modelos propostos.

1.5 Organização do trabalho
Além deste Capítulo introdutório, o presente trabalho possui mais 4 capítulos e

está organizado da seguinte forma: o Capítulo 2 descreve todo o conceito relacionado
a Programming by Demonstration (PbD) e também mostra trabalhos relacionados na
área; o Capítulo 3 descreve toda a implementação realizada para criação do sistema
PbD com base em grafos; o Capítulo 4 apresenta todos os experimentos e seus res-
pectivos resultados. Por fim, Capítulo 5 expõe as conclusões obtidas neste trabalho.
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2 Referencial Teórico

Este Capitulo tem como objetivo contextualizar as categorias e métodos para
realizar a programação de um robô (Seção 2.1) e descrever commais clareza a Progra-
mação por Demonstração (Seção 2.2), mostrando desde a concepção dos primeiros
sistemas baseados em PbD, até serem inseridos no campo de estudo da robótica. Por
fim, serão apresentados elementos da Teoria dos Grafos (Seção 2.3) necessários para
a compreensão do modelo de base de conhecimento e dos algoritmos propostos neste
trabalho.

2.1 Programação de robôs
Um robô é um tipo de sistema embarcado, que é geralmente implementado

como uma máquina eletromecânica controlada por programas de computador com o
objetivo de realizar uma atividade útil aos seres humanos. Mesmo para executar a
mais básica operação, um robô precisa ter software em execução para monitorar os
seus sensores e acionar os seus atuadores fazendo com que execute as tarefas para
as quais está programado, dentro dos limites dos seus graus de liberdade.

A área relacionada especificamente à programação de robôs pode ser dividida
emManual Programming (ProgramaçãoManual) eAutomatic programming (Programa-
ção automática) (BIGGS; MACDONALD, 2003). Na primeira, o usuário/programador
precisa diretamente desenvolver o programa e, consequentemente, executá-lo no robô
para que adquira um comportamento. O robô não precisa estar presente enquanto é re-
alizada a programação. Assim como a programação de computadores convencionais,
a Programação Manual pode ser feita por meio de linguagens textuais como C, Java,
Python etc, ou por meio de modelos gráficos que permitam a geração automática de
código textual tais como linguagens de programação visuais baseadas em blocos. A
Seção 2.1.1 apresenta detalhes sobre estas categorias.

Na Programação Automática, diferentemente, o usuário não precisa ter acesso
direto ao código fonte do software de controle do robô, ou seja, o comportamento exe-
cutado pelo robô é obtido a partir de inferências sobre sua base de conhecimento. Esta
base, por sua vez, é composta pelo tratamento, realizado por algoritmos específicos,
dos dados capturados pelos sensores do robô. Este tipo de programação abrange
três categorias ilustradas na Figura 3 e detalhadas na Seção 2.1.2: learning systems
(Sistemas de Aprendizagem), Programming by Demonstration (Programação por De-
monstração) e Instructive Systems (Sistemas Instrutivos).
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Figura 3 – Categorias da Automatic programming (Programação Automática)

Fonte: Adaptado de (BIGGS; MACDONALD, 2003).

2.1.1 Sistemas de Programação Manual
A forma mais comum de programar manualmente um robô é a utilização de lin-

guagens de programação convencionais como C, Java, Python e etc, para o desenvol-
vimento do código. Os usuários desses sistemas precisam entender especificamente
sobre a linguagem que se pretende utilizar, conhecer as APIs de programação do robô,
bem como ser especialista na tarefa que se quer programar, ou ter acesso direto à
equipe de produção que domine estas tarefas. A Programação Manual se torna mais
adequada quando o ambiente em que o robô está inserido não requer mudanças con-
tínuas, obrigando o robô a alterar seu comportamento para se ajustar às necessidades
de um momento específico.

A Programação Manual é classificada pelor autores (BIGGS; MACDONALD,
2003) em duas categorias principais, são elas: Text−based Systems (Sistemas Base-
ado em Texto) e Graphical Systems (Sistemas Gráficos).

Em Sistemas Baseados em Texto, um programador precisa escrever códigos
textualmente para implementar a inteligência do robô, desta forma, o processo para
concepção de um comportamento robótico, demanda tanto profissionais em programa-
ção textual, quanto especialista na tarefa em particular que o dispositivo deve executar,
nesta, a forma da programação utilizada para o desenvolvimento do programa, é o que
necessariamente difere um sistema de outro.

Dois principais métodos levam em consideração a especificidade da linguagem
utilizada, o primeiro caracteriza-se pela ausência de uma linguagem padronizada en-
tre diferentes fabricantes de robôs, ou seja, neste método utiliza-se uma linguagem
proprietária apropriada para o modelo do robô ou do fabricante, desta forma, se uma
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fábrica utiliza robôs de muitos fabricantes diferentes, então ela terá que treinar seus
programadores para cada um, ou pagar para o fabricante desenvolver os programas
necessários (BIGGS; MACDONALD, 2003), o que representa uma significante adver-
sidade para realizar a programação de um robô.

O segundo método, ao contrário do primeiro, utiliza uma linguagem aberta de
propósito geral, o termo “Geral”, traduz uma linguagem de múltiplos propósitos de alto
nível, um exemplo disto é a linguagemC++. Essa abordagem é especialmente utilizada
em cenários envolvendo pesquisas, onde há uma seleção de uma linguagem para ser
utilizada como base, afim de acolher as necessidades do projeto.

Por fim, outro método interessante na programação manual, caracteriza-se por
sistemas programados por uma lista de instruções específicas, ou seja, o usuário se-
leciona manualmente em uma lista, quais comportamentos o robô deve adquirir em
um dado momento. Desta forma, o usuário não precisa ser programador a nível de
linhas de código, a evolução desta abordagem fez com que esse método se tornasse
mais tarde, uma das categorias na Programação Automática. A principal desvantagem
desse método é que o robô não é capaz de aprender novos comportamentos, ele é
capaz apenas de adquirir comportamentos previamente definidos, os tornando inúteis
em cenários onde há mudanças constantes de atividades.

Os softwares de programação baseados em componentes gráficos proporcio-
nam aos programadores uma alternativa mais produtiva para a programação ao ofe-
recer objetos gráficos para representação dos movimentos dos robôs. Não se tem
acesso direto a linhas de código de modo textual, mesmo assim, essa abordagem não
se caracteriza como uma forma automática de programação devido ao fato dos usuá-
rios/programadores ainda precisarem fornecer os comandos necessários ao sistema
manualmente (como especificar ações e fluxos do programa, para que isso reflita em
um comportamento característico do robô). Por ser um método mais simples de pro-
gramação, caso o usuário adquira um treinamento adequado, o próprio especialista
no desenvolvimento da tarefa no mundo real pode ser capaz de programar um robô
para reproduzi-la, sem a necessidade de outro programador trabalhando em conjunto
(BIGGS; MACDONALD, 2003). Para a programação manual, esta é a abordagemmais
próxima de uma programação automática. A principal adversidade neste método é a
demora resultante na configuração de cada tarefa que o robô deve executar, pois deve
ser feito individualmente para cada atividade específica. Além disso, para um usuário
se tornar um programador utilizando esse método, o mesmo precisa passar por um
treinamento bastante específico para aprender a utilizar o programa.
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2.1.2 Sistemas de Programação Automática
Os sistemas de aprendizagem, uma das categorias de programação automá-

tica, são aqueles que tem como característica a capacidade de aprender a realizar uma
determinada atividade de maneira autônoma, tomando decisões por conta própria, a
partir da habilidade de realizar autoexploração. Geralmente, são utilizadas técnicas
de inteligência artificial conexionista, como redes neurais, para fornecer a inteligência
necessária para que o robô aprenda a partir de erros do passado e tome decisões
fundamentais com o objetivo de não repeti-las no futuro. Nessa abordagem o tempo
se torna um dos problemas cruciais, uma vez que, para o robô aprender corretamente
como proceder, ele precisa realizar inúmeras tentativas até conseguir alcançar o obje-
tivo pretendido.

A programação por demonstração é, dentro da Programação Automática, o mé-
todomais comumpara realizar a programação de um robô. Tem como principal caracte-
rística a necessidade de um instrutor que ensine ao robô como realizar uma dada ativi-
dade. Diferentes tipos de interfaces podem ser utilizadas entre o usuário/programador
e o sistema robótico com o intuito de transmitir o comportamento. Convencionalmente,
utilizam-se teach-pendants para demonstrar os movimentos que o robô deve realizar
(BIGGS; MACDONALD, 2003). Contudo, métodos mais naturais de comunicação tam-
bém são possíveis, como gestos ou até mesmo a própria voz do usuário. Sistemas PbD
também podem captar demonstrações, por meio do toque do usuário/programador no
robô, movendo-o diretamente no sentido da atividade desejada. Por ser o foco deste
trabalho detalharemos outros aspectos do PbD na Seção 2.2.

Por fim, os Sistemas Instrutivos tem como principal característica, a necessi-
dade de receber instruções sequenciais do usuário, para que o robô realize uma ati-
vidade já conhecida. Essa técnica é mais adequada para comandar os robôs para
realizar tarefas que eles já foram treinados ou programados para executar (BIGGS;
MACDONALD, 2003). Desta forma, o usuário/programador apenas ordena que o robô
realize uma atividade, e por sua vez, o robô entra em operação a partir do conheci-
mento prévio de como proceder. Os métodos mais utilizados para transmitir instruções
para o robô são por meio de reconhecimento de gestos e voz.

A utilização dosmétodos de Programação Automática são interessantes quando
os robôs estão inseridos em ambientes onde há uma necessidade contínua de alternân-
cia no seu comportamento, como por exemplo, robôs que precisam executar inúmeras
atividades em linhas de produção nas indústrias, onde a busca contínua no ganho de
produtividade, demanda robôs cada vez mais versáteis e inteligentes o suficiente para
aprender a executar novas atividade com rapidez e eficiência. Sistemas baseados em
Programação Automática procuram facilitar a forma como um usuário ou, até mesmo,
o ambiente transferem um comportamento desejado para um robô, reduzindo a neces-
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sidade de um especialista em programação.

A Tabela 1 apresenta os principais tipos de sistemas, a categoria deles em
relação ao tipo programação utilizada (Automática ou Manual) e as diferenças entre
as tecnologias comumente utilizadas para cada um. Essas tecnologias são essenciais
para fornecer aos sistemas os dados e/ou comandos necessários para a programação
do robô.

Tabela 1 – Principais diferenças entres os tipos de programação

Tipo dos Sistemas Categoria da Programação Tecnologias utilizadas

Sistemas de Aprendizagem Automática Redes Neurais,
Sensores.

Programação por Demonstração Automática Teach pendant, Joystick,
Sensores, Câmeras.

Sistemas Instrutivos Automática Sensores, voz,
gestos etc.

Sistemas Baseados em Texto Manual Linguagens como
C++, Java e Python.

Sistemas Gráficos Manual
Componentes Gráficos,
Softwares Gráficos
de Simulação.

2.2 Características dos sistemas PbD
O primeiro sistema baseado em Programação por Demonstração - PbD inicial-

mente não foi projetado para a aplicação em robôs. No ano de 1975, o sistema Pygma-
lion - um programa para estimular o pensamento criativo em pessoas - foi desenvolvido
por David C. Smith (CYPHER; HALBERT, 1993), dando então os primeiros passos na
ideia de um ser humano programar um sistema apenas demonstrando a ele como re-
alizar determinada tarefa, sem ser necessário ter acesso ao código fonte do sistema.
Desta forma os usuários de sistemas baseados em PbD, não necessariamente preci-
sam ter conhecimento sobre programação, já que devem apenas demonstrar ao sis-
tema como realizar uma determinada tarefa e, por sua vez, o próprio sistema deve
aprender e criar um programa interno que realize a tarefa refletindo as ações do usuá-
rio.

Uma das motivações para o avanço no estudo da PbD foi a mudança de perfil
dos usuários de computadores ao longo do tempo. Nas décadas de 60 e 70, a maio-
ria dos usuários tinham conhecimento sobre programação e construíam seus próprios
programas, porém, com o passar do tempo e a sofisticação dos aplicativos, os usuá-
rios passaram reconfigurar seus aplicativos e computadores sem programar e sem a
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necessidade de um especialista. Segundo (CYPHER; HALBERT, 1993) “usuários de
computadores contemporâneos são ’usuários finais’, o que significa que eles estão no
final do processo de programação de computadores, longe do programador”. Desta
forma, sistemas capazes de se reprogramar se mostraram alternativas interessantes
para se adequar à mudança do perfil dos usuários finais de computadores.

O maior potencial para o uso de programação por demonstração é automatizar
atividades repetitivas (CYPHER; HALBERT, 1993). Realizar manualmente uma tarefa
repetitiva por um longo período de tempo ou por uma grande quantidade consecu-
tiva de vezes além de ser tedioso se torna propício ao aparecimento de erros. Utilizar
máquinas para reproduzir tais atividades além de favorecer a redução do tempo de
produção de uma indústria, racionaliza os seus gastos com mão de obra, que podem
ser direcionados a outras atividades.

Os sistemas baseados em PbD são caracterizados por (CYPHER; HALBERT,
1993) em quatro dimensões. A primeira dimensão é denominada Uses and Users
(Usos e Usuários), e busca identificar qual o exato domínio da aplicação e quem são
os seus usuários. A segunda dimensão é denominada User Interaction (Interação com
Usuário) que leva em consideração a forma com que o usuário se comunica com o
sistema para gerenciar funções no programa. A terceira dimensão denominada como
Inference (Inferência), busca explicar como um sistema elege uma compreensão ge-
neralizada para as demonstrações realizadas pelo usuário, baseado em uma amostra
limitada de exemplos. A última dimensão e não menos importante, é denominada de
Knowledge (Conhecimento), que basicamente refere-se ao momento de tirar por con-
clusão, quais informações o sistema pode usar.

A compreensão destas características podem tanto ajudar na avaliação e com-
paração entre diferentes sistemas PbD, como, quando tomadas como modelo, auxiliar
projetistas a definir a contribuição dos seus sistemas no campo de pesquisa da PbD
(CYPHER; HALBERT, 1993).

2.2.1 Programming by Demonstration na Robótica
Programação de robôs por Demonstração (PbD), tem se tornado um tema cen-

tral na robótica que se estende por diversas áreas de pesquisa tais como: Interação Hu-
mano Robô, Aprendizado de Máquina, Visão de Máquina e Controle Motor (BILLARD
et al., 2008). No início da década de 80, PbD surgiu como uma alternativa promissora
para o setor industrial que demandava uma grande quantidade dispositivos robóticos
nas suas linhas de produção. Com as técnicas PbD, o processo manual de programa-
ção dos equipamentos por codificação poderia se tornar completamente automatizado.

PbD também se refere a aprendizagem por imitação e é um mecanismo pode-
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roso para reduzir a complexidade dos espaços de busca para a aprendizagem (BIL-
LARD et al., 2008). Nós, seres humanos, ao observarmos ações que geram resulta-
dos positivos ou negativos, intuitivamente reduzimos nossa busca por uma solução
possível para um problema em observação, baseando-se em um modelo que gere um
resultado significativo.

A ideia básica da Programação por demonstração é permitir que o robô observe
um ser humano executar uma tarefa para extrair o máximo possível de informações
a partir da demonstração e mapeá-la em uma representação abstrata e generalizada
da tarefa demonstrada (ZöLLNER, 2004). As vantagens oferecidas pela utilização de
PbD podem ser observadas quando se considera que o processo de reprogramação
de um robô através de codificação direta a cada nova tarefa que ele pretende executar,
demanda gastos com capital humano especializado e, a depender da experiência do
programador, maior tempo de programação total por conta da introdução de impreci-
sões no código.

Sistemas PbD mais complexos utilizam diversos recursos de hardware, como
sensores e câmeras, para possibilitar o robô observar a tarefa que terá que reproduzir,
bem como dados inerentes ao ambiente o qual está inserido, quando esses recursos
não são possíveis, outra forma de repassar informações necessárias para o robô sobre
a atividade pretendida é com a utilização de um teach-pendant.

O uso deste artefato permite que o usuário que programa a tarefa, seja omesmo
especialista da atividade nomundo real, desta forma não há necessidade de um progra-
mador trabalhando em conjunto, para fornecer os comandos necessários robô, como
exemplo, para demonstrar a um robô como ele deve realizar uma atividade de solda de
uma peça metálica qualquer, o próprio soldador pode programar o robô por demons-
tração de como fazer a tarefa. Imprecisões fornecidas pelo usuário não observadas no
momento da demonstração da tarefa, só serão percebidas da fase de teste, podendo
acarretar perca de tempo e produtividade.

2.2.2 Sistemas robóticos baseados em PbD
Um sistema baseado em PbD é utilizado em (ZöLLNER, 2004) para observar,

aprender e generalizar atividades executadas por seres humanos, para um manipula-
dor robótico de dois braços. Neste trabalho um ciclo para Programação por Demons-
tração é proposto para transferir as demonstrações da tarefa para o robô, com objetivo
de absorver o maior número possível de informações da demonstração. Com posse
dessas informações o sistema cria uma abstração mais generalizada da tarefa com a
finalidade de aproveitá-la em outros modelos diferentes de robôs. O clico PbD é divi-
dido em três fases fundamentais. Na primeira fase é feita a percepção e interpretação
da demonstração fornecida pelo usuário, para perceber a tarefa recursos como câme-
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ras, sensores táteis e luvas com rastreadores magnéticos são utilizados. Na segunda
fase é gerada a abstração da tarefa por meio de uma generalização. Na última fase do
ciclo é feito o mapeamento das tarefas abstratas para os robôs específicos.

Em outro estudo realizado por (EKVALL, 2005), um sistema de aprendizagem
por demonstração é integrado a um sistema de planejamento de nível de tarefa. O
esquema geral do sistema, se baseia em um professor fornecer as demonstrações de
como realizar uma determinada tarefa, e por sua vez o robô utiliza de entradas visuais
para observar tais demonstrações, em seguida o robô planeja a tarefa e por fim ele a
executa.

Três maneiras diferentes podem ser utilizadas para o aprendizado da tarefa.
A primeira, denominada de Imitation Learning (Aprendizagem de Imitação), é comu-
mente usada para representar a tarefa de aprendizagem em um nível baixo, conside-
rando reprodução de trajetórias e/ou configurações conjuntas do robô (EKVALL, 2008).
Com esta técnica é apenas possível reproduzir uma tarefa utilizando as mesmas coor-
denadas, sem mudar nada no trajeto. A segunda maneira, denominada de Learning in
Dialogue with Teacher (Aprendizagem emDiálogo com Professor), um humano realiza
o papel de um professor, demonstrando a tarefa enquanto explica o passo a passo.
Restrições podem ser concebidas pelo humano professor, fazendo com que o robô
seja disciplinado, aprendendo como deve ou não agir, prevenindo decisões erradas.
Por último, tem-se a Generalizing from Multiple Observations (Generalização de Múl-
tiplas Observações), um robô deve ser capaz de aprender a realizar uma nova tarefa
a partir de um conjunto de demonstrações, extraindo deste conjunto, um modelo geral
de execução da tarefa. Várias observações da mesma tarefa podem ser utilizadas para
formar um modelo mais geral, e portanto, flexível da tarefa (EKVALL, 2008).

Em (FORBES et al., 2014), um arcabouço PbD é proposto. A partir de uma de-
monstração inicial, o robô recolhe mais informações de um conjunto de demonstrações
providos por diversas pessoas diferentes e utilizando a demonstração inicial como se-
mente. Na sequência, o robô busca cenários onde a demonstração classificada como
semente não irá funcionar mas que provavelmente seja remediável, por fim o robô
executa a ação no novo cenário usando as demonstrações selecionadas.

Dividida em duas diferentes fases denominadas de Task Learning (Tarefa de
Aprendizagem) e Task Refining (Tarefa de Refino) respectivamente, (MOLLARD et al.,
2015) apresentam uma abordagem para realizar programação robótica por demons-
tração que contempla Feedback e Transferência de Conhecimento. Para o feedback,
palavra utilizada para expressar uma mensagem de retorno como resposta a alguma
ação realizada, o sistema utiliza uma GUI para interação com o usuário por uma re-
presentação 3D. Desta forma, o usuário pode idealizar intuitivamente o planejamento
da tarefa, bem como corrigir possíveis imprecisões antes mesmo da execução. Este
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sistema de simulação 3D permite ao usuário reparar possíveis imprecisões.

A Tabela 2 expõe um resumo dos sistemas PbD observados, onde na segunda
coluna apresenta o modo que é realizado a demonstração da tarefa para o robô, na
terceira coluna apresenta qual a aplicabilidade desses sistemas e por fim quais são as
técnicas utilizadas nos trabalhos.

Tabela 2 – Resumo dos sistemas PbD Observados

Referência Modo da
Demonstração Aplicação Técnicas Utilizadas

(ZöLLNER, 2004) Gestual Robô com dois braços,
Robô Humanoide.

Redes Neurais,SVM,
câmeras, sensores
táteis,luvas com
rastreadores
magnéticos.

(EKVALL, 2005) Gestual
Manipulador simples
para atividades
caseiras.

rastreador magnético,
sensores de medição.

(EKVALL, 2008) Entrada Visual Manipulador de
objetos simples.

Sistema de interface
para programar
a tarefa.

(FORBES et al., 2014) Toque no robô Manipulador de
objetos simples.

Sistema gráfico de
simulação.

(MOLLARD et al., 2015) Simulação 3D Robô para montagem
de produtos.

GUI de simulação 3D
para programar a tarefa.

2.3 Teoria dos Grafos
Os primeiros estudos relacionados à teoria dos grafos foram conduzidos cerca

de três séculos atrás. Na época, o estudo que se tornou mais relevante para o surgi-
mento e exploração da teoria foi publicado por Leonhard Euler, no ano de 1736, sob
o título ”A solução para o problema relativo à geometria da posição”, que investiga o
problema conhecido como Sete Pontes de Königsberg.

Atualmente, chamada de Kaliningrado e pertencente ao território russo, a cidade
de Königsberg é atravessada por um rio, formando duas ilhas, e possui sete pontes
que foram criadas para conectar todo o complexo, ilustrado na Figura 4. O problema
consiste em, a partir de um determinado ponto, passar por todas as pontes somente
uma vez e retornar ao ponto inicial (CARVALHO, 2005).

A teoria dos grafos na matemática investiga a associação finita entre compo-
nentes de um determinado grupo, onde cada componente deste grupo é denominado
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Figura 4 – Ilustração do problema Sete Pontes de Königsberg.

Fonte: Retirado do artigo (RODRIGUES, 2007).

de vértice ou nó, e cada relação entre um par de vértices desse mesmo grupo é deno-
minado como aresta. Assim, pode-se entender o grafo como uma estrutura formada
por dois tipos de objetos: vértices e arestas. Cada aresta é um par de vértices, ou seja,
um conjunto com exatamente dois vértices (FEOFILOFF, 2012). Quando estes pares
de vértices são ordenados, chama-se o grafo de direcionado, caso contrário, quando
os pares de vértices não são ordenados, chama-se o grafo não-direcionado. Estes ti-
pos de grafos são ilustrados na Figura 5. Em G1 as arestas A1, A2 e A3 não possuem
direção, enquanto em G2, como exemplo, as arestas A1, A2 e A3, necessariamente
possuem uma direção específica, sempre saindo de um nó e entrando em outro nó
vizinho.

Figura 5 – Representação de grafos: G1 não-direcionado e G2 direcionado

Fonte: Autor

Quando as arestas pertencentes a um grafo possuem pesos, este é chamado
grafo ponderado. Neste tipo de grafo, um peso ou conjunto de pesos é associado a
cada aresta, representado da formaw(i, j), ou seja,w(1, 2) é o peso associado a aresta
que une os nós 1 e 2 (CARVALHO, 2005).

Dentro da Teoria dos Grafos, existe um problema computacional conhecido
como Problema do Caminho Mínimo, que pode ser caracterizado da seguinte forma:
Dado um grafo ponderado, onde todas suas arestas possuem um peso associado,
deve-se encontrar o caminho de distância mínima entre um vértice inicial A e um vér-
tice final Z. O caminho de distância mínima entre um vértice inicial A e um vértice final
Z é aquele cujo somatório de todos os pesos das arestas possui valor mínimo compa-
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rado com todos os outros caminhos possíveis entre os vértices A e Z. Para solucionar
esse problema, pode-se usar o Algoritmo de Dijkstra.

Considere o grafo ponderado ilustrado na Figura 6 representando um grafo com
os vértices A,B,C,D,E e F. Para calcular todos os caminhos possíveis, entre o vértice
inicial A e todos os outros vértices do grafo, o uso do Algoritmo de Dijkstra pode ser
vantajoso.

Figura 6 – Representação de um Grafo Ponderado

Fonte: Autor

Ao iniciar sua execução, o algoritmo em questão julga que o custo mínimo en-
tre o vértice definido como inicial e todos os outros vértices do grafo é preliminarmente
considerada como infinito (∞), e na medida que vai avançando esse custo vai sendo
regulado. Sempre quando um caminho é considerado menos custoso, entre dois vérti-
ces (A e D por exemplo), este último vértice é considerado como “Fechado” (o vértice
D no exemplo).

Primeiramente, exceto para o vértice A definido como inicial, a distância entre
todos os vértices do grafo é considerado infinita (∞), para o vértice A é zero. O procedi-
mento executado pelo algoritmo pode ser representado em uma tabela onde a medida
que for avançando os dados vão sendo alterados. Na Tabela mostrada na Figura 7
a primeira linha equivale à representação dos vértices do grafo ilustrado ao lado da
Tabela, a segunda linha representa os custos entre os vértices e seus precedentes (o
precedente de um vértice t é o vértice que precede t no caminho de custo mínimo de a

para t), que está representado na terceira linha. Por último estão os dados pertinentes
a informação se um vértice está “Fechado” ou não, caso não, recebem o caractere N,
caso isso seja verdade recebe então o caractere S.

Em seguida, o vértice cujo o custo associado a sua aresta for menor, em com-
paração a todos os outros, é selecionado e marcado como “Fechado”. Para o exemplo
mostrado na Figura 8 em diante, foi selecionado o vértice A como ponto de partida. Par-
tindo dele, são recalculadas os demais custos para os vértices adjacentes que ainda
não foram visitados, ou seja, possuem na tabela o caractere N na linha “Fechado”.
Quando o custo calculado é menor que o custo anteriormente armazenado, é feita
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Figura 7 – Tabela e Grafo representando o funcionamento do Algoritmo de Dijkstra

Fonte: Autor

então a substituição e o vértice por onde esse custo foi calculado, é atribuído como
precedente na tabela.

Na Figura 8 o vértice A foi selecionado e marcado como ”Fechado”, todos os
custos relacionados aos vértices adjacentes a ele são calculados e substituídos na
Tabela, os vértices não adjacentes ainda continuam com o valor infinito (∞).

Figura 8 – Tabela e Grafo relacionado ao vértice A

Fonte: Autor

Continuamente, a mesma lógica segue para o segundo passo, ou seja, seleci-
onar os vértices adjacentes que ainda não foram visitados, marcar aquele que possuir
menor curso associado como “fechado”, e a partir dele realizar os cálculos e substituir
na tabela apenas aqueles que possuírem um custo inferir ao anteriormente armaze-
nado na tabela.

Na Figura 9 o vértice D foi selecionado e marcado como ”Fechado”, os custos
de C, E e F alterados na tabela. Para os dois últimos, qualquer valor é menor que
infinito, os precedentes de C, E e F foram alterados para D.

Na Figura 10 o vértice C foi selecionado e marcado como ”Fechado”, ele possui
ligação disponível apenas com o vértice F, o custo e o precedente de F foram alterados.

Na Figura 11 o vértice F foi selecionado e marcado como ”Fechado”, o custo e
o precedente de E foram alterados.

Na Figura 12 o vértice B foi selecionado e marcado como ”Fechado”, nenhum
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Figura 9 – Tabela e Grafo relacionado ao vértice D

Fonte: Autor

Figura 10 – Tabela e Grafo relacionado ao vértice C

Fonte: Autor

Figura 11 – Tabela e Grafo relacionado ao vértice F

Fonte: Autor

custo ou precedente foi alterado na tabela.

Na Figura 13 o vértice E foi selecionado e marcado como ”Fechado”, nenhum
custo ou precedente foi alterado na tabela.

Ao fim da execução do algorítimo, quando todos os vértices do grafo são visi-
tados e marcados como ”Fechados”, a distancia mínima entre o vértice definido como
inicial para todos os outros do grafo, estão disponíveis na tabela, como um exemplo,
o custo mínimo para o caminho do vértice A até o vértice F é de 5 indo pelo vértice C.

Como limitação do algoritmo de Dijkstra, deve-se observar que os pesos do
grafo ponderado não podem conter valores negativos.

Seja G(V,E) um grafo orientado e a um vértice de G, o algoritmo de Dijkstra,
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Figura 12 – Tabela e Grafo relacionado ao vértice B

Fonte: Autor

Figura 13 – Tabela e Grafo relacionado ao vértice E

Fonte: Autor

retirado de (CARVALHO, 2005), pode ser enunciado como:

1. Atribui-se zero à estimativa do custo do vértice a (a raiz da busca) e infinito às
demais estimativas;

2. Atribui-se um valor qualquer aos precedentes;

3. Enquanto houver vértice aberto:

a) Escolha k como o vértice aberto cujo custo seja o menor dentre os vértices
abertos;

b) fecha-se o vértice k

c) Para todo vértice j aberto que seja sucessor de k faz-se:

i. soma-se a estimativa do vértice k com o custo da aresta que une k a j;
ii. caso a soma sejamenor que a estimativa anterior para o vértice j, substitui-

se o custo e anota-se k como precedente de j.

A forma como um grafo é representado no computador pode impactar direta-
mente no desempenho de um algoritmo que receba um grafo de entrada e no consumo
de memória. Os grafos podem ser representados no computador por meio da matriz
de adjacências ou da lista de adjacências. A matriz de adjacências de um grafo com
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|V | vértices é uma matriz |V | × |V | de 0s e 1s, na qual a entrada na linha i e coluna j

é 1, se e somente se, a aresta (i, j) estiver no grafo (KHAN…, 2016). A Figura 14(a)
ilustra a matriz de adjacências do grafo representado na Figura 6.

Figura 14 – Representação de um grafo por meio da uma Matriz de Adjacências (a) e
de uma Lista de Adjacências (b)

Fonte: Autor

Outra forma de representar um grafo no computador é por meio de uma lista
de adjacências. Essa representação mantém, para cada vértice do grafo, uma lista
de todos os vértices adjacentes a ele. Tipicamente, tem-se |V | listas de adjacências
(KHAN…, 2016). A Figura 14(b) apresenta a representação por meio de listas de adja-
cências do grafo mostrado na Figura 6.
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3 Proposta

Os sistemas PbD mais complexos dispõem, geralmente, de dispositivos senso-
riais e câmeras de vídeo para que o robô obtenha dados sobre a tarefa que o usuário
pretende transmitir a ele. Sem esses recursos, contudo, o robô se torna incapacitado
de aprender tais demonstrações por observação, fazendo se então necessária a utiliza-
ção de outros métodos. Com o uso de um teach pendant, o usuário/programador pode
programar robôs na indústria para tarefas repetitivas transmitindo ao robô os coman-
dos sequenciais necessários para realizar uma tarefa, não necessitando que o robô
faça uso de sensores para capturar o movimento do usuário ou para certificar-se de
sua própria posição no ambiente. Um exemplo de tarefa seria, por exemplo, capturar
um objeto em um ponto A, manipular este objeto, e levá-lo a um ponto B qualquer.

Comumente, o usuário precisaria demonstrar apenas uma vez ao robô a tarefa
a ser executada, contudo o ensino da tarefa pode vir acompanhado por imprecisões na
demonstração fornecida pelo usuário (devido à falta de experiência na execução da ta-
refa, por exemplo). Assim, a programação de tarefas complexas por meio de teaching
pendants pode se tornar morosa devido à imprecisões introduzidas durante a fase de
programação do robô, o que obrigaria a uma fase de reprogramação, após a fase de
testes, aumentando o tempo que o robô permanece parado. Retomando o exemplo an-
terior, uma imprecisão pode ocorrer se o usuário, ao manipular o controle, movimentar
o robô por um traçado não desejado ou pousar o objeto em um ponto diferente de B.

A estratégia proposta neste trabalho permite que o robô aprenda uma determi-
nada tarefa mesmo na presença de imperfeições na execução da tarefa. Para mitigar
o efeito destes erros, o usuário realiza diversas demonstrações de uma mesma tarefa
para que o robô consiga inferir a melhor forma de executá-la a partir dos movimentos
mais frequentes nas demonstrações. Além disso, a estratégia permite que a demons-
tração seja feita por um usuário/programador sem conhecimentos em programação, o
que potencialmente reduz os custos de programação.

A estratégia proposta emprega uma abordagem baseada em grafos que deve
ser aplicada a um robô equipado com um conjunto de atuadores que permitam que este
execute tarefas. Para mapear os possíveis estados dos atuadores do robô utiliza-se
um grafo em que cada nó representa uma configuração possível dentro do conjunto de
graus de liberdade dos atuadores do robô. A Figura 15 ilustra a relação entre os graus
dos servomotores do robô utilizado neste estudo e um estado do grafo. As arestas
do grafo, por outro lado, representam movimentos possíveis executados pelo robô de
acordo com as limitações dos seus atuadores, do joystick utilizado na programação e
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da tarefa realizada. A transição de estados, ou seja, o mudança de um nó para outro nó
vizinho dentro do grafo, passando necessariamente por uma aresta, representa então
um movimento do robô.

Figura 15 – Relação entre graus dos motores e um estado do grafo

Fonte: Adaptado de (ELECTRONICS, 2016).

Enquanto o usuário manipula o robô na execução da tarefa fornecendo coman-
dos de forma sequencial através do joystick, o algoritmo de aprendizado armazena o
caminho feito enquanto percorre o grafo de um nó para outro, ou seja, de um estado
para o outro, através das arestas até que a tarefa seja cumprida. Ao término da execu-
ção da tarefa, o usuário forneceu ao robô uma demonstração possível de como realizar
a atividade proposta, a qual é armazenada pelo algoritmo. Novas demonstrações po-
dem ser feitas da mesma forma.

3.1 Modelos Robóticos
O sistema PbD proposto nesse trabalho pode ser implantado em diversos mo-

delos robóticos diferentes, por manter uma abordagem baseada em grafo, onde cada
vértice equivale a um conjunto de graus configurados nos servomotores do dispositivo.
Este conjunto se traduz numa posição física do estado atual do robô no mundo real,
e cada aresta do grafo, equivalente à transição de um estado para outro adjacente,
representando um movimento realizado pelo robô.

O primeiro requisito necessário para que o sistema seja implantado em um mo-
delo robótico candidato é que os atuadores do dispositivo devem ser discretos, ou
devem poder ser discretizados sem perdas para o robô. Em outras palavras, deve-se
dispor de informações de todas as possíveis configurações que os atuadores do robô
podem assumir. No caso de um laser, por exemplo, pode-se ter níveis como ligado
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e desligado, ou ainda níveis discretos de intensidade. No caso de servomotores, por
outro lado, deve-se ter disponível as posições que o motor pode assumir.

Outra característica relevante nos dispositivos robóticos, é que eles não neces-
sariamente precisam ter sensores responsáveis por captar o ambiente em que estão
inseridos ou para observar as demonstrações da tarefa. Para o funcionamento, um
simples joystick (como o que está representado na Figura 16) que acione os atuado-
res do robô pode ser utilizado para indicar os movimentos que o robô deve executar.
Ainda para funcionamento do sistema, o modelo robótico deve possuir CPU e memória
para o processamento dos dados do programa.

Figura 16 – Exemplo de Joystick para uso no sistema proposto.

Fonte: Retirado de (GENERIC…, 2016)

O sistema PbD apresentado também permite que as entradas possam conter
imprecisões. Estas podem advir tanto do usuário ao prover diretamente comandos ao
robô através do joystick, quanto pelo próprio meio, que por ser eletrônico, pode estar
sujeito a algum ruído que refletirá em um movimento indesejado.

3.2 Modelo da Base de Conhecimento
O modelo da base de conhecimento para o desenvolvimento do sistema pro-

posto utiliza um grafo para representar todos os possíveis estados que o robô pode
alcançar. Este grafo de estados é criado a partir do relacionamento dos possíveis esta-
dos que seus atuadores podem assumir, contendo todos os nós possíveis e todas as
arestas compatíveis. Assim, para um robô com n atuadores, onde cada atuador possui
um conjunto de estados Ai = {si1, si2, si3, ..., sim}, os nós do grafo G = (N,E) serão os
elementos do conjunto N = A1 ×A2 ×A3 × ...×An. O total de nós deste grafo é dado
por |N | = |A1||A2||A3|...|An|.

A Tabela 3 exemplifica como são criados os estados de um robô com quatro
servomotores. No caso, as colunas BASE, ALTURA, COMPLEMENTO e GARRA têm
relação direta as funções específicas dos atuadores no robô. A linha Valor indica o ân-
gulo do servomotor no caso de BASE, ALTURA e COMPLEMENTO, e indica também
o estado do servomotor GARRA, que é binário (aberta ou fechada). A especificação do
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valor em cada estado depende do conjunto de graus de liberdade que os servomotores
possuem.

Tabela 3 – Exemplo de estado de um manipulador robótico com 4 atuadores.

Nome BASE ALTURA COMPLEMENTO GARRA
Valor 90 90 90 0

As arestas do grafo de estados são modeladas conforme os possíveis movi-
mentos de cada atuador. Assim, como exemplo, a aresta e11→12 = (s11,23,31, s12,23,31),
refere-se a mudança do estado 1 do atuador 1 para o estado 2 do mesmo atuador,
conservando os estados dos outros dois atuadores.

A Figura 17 ilustra um recorte do grafo de estados de um robô com quatro atu-
adores. Nele, os três primeiros atuadores do robô, foi predefinido que podem apenas
ser incrementados ou decrementados do valor 5 (equivalente à angulação de um ser-
vomotor, por exemplo) e o último atuador só pode possui dois estados. O nó vermelho
A corresponde ao estado atual do robô e possui arestas para sete nós vizinhos, que
serão um dos nós visitados após o próximo movimento.

Os graus de liberdade dos servomotores do robô foram configurados para per-
manecer entre 60 e 120 graus, exceto para o servomotor da garra que apenas pode
assumir dois estados (aberto ou fechado). Como exemplo, para o robô realizar um
movimento total para esquerda, o servomotor responsável pela base do robô, precisa
então ir para o grau 60, na mesa lógica inversa se o robô realizar um movimento total
para direita, o servomotor da base irá para o grau 120. Por definição, o incremento
e decremento dos graus dos servomotores do robô foram configurados passos de 5
graus por vez.

Para o servomotor da garra, o tratamento da configuração dos graus de liber-
dade foi implementado direto no Arduino, caso ele receba um valor 0, o grau de liber-
dade do servomotor é configurado para 60 graus, representado visualmente a garra
fechada, caso ele receba um valor 1, o grau é então configurado para 120, represen-
tando visualmente a garra aberta.

Como cada vértice do grafo representa uma tupla formada pelo conjunto de
graus de liberdade do robô, ele possui 3 servomotores que vão de 60 à 120 graus em
passos de 5 graus por vez e um servomotor para garra que possui dois estados pos-
síveis, para o sistema desenvolvido, 4394 vértices são necessários para representar
todos os estados possíveis do robô.

Deve-se ressaltar ainda que todas as arestas e ∈ E do grafo possuem um
peso w(e), cujo valor inicial é 0. Esses pesos serão fundamentais para o processo de
treinamento, e serão discutidos com mais detalhes na Seção 3.3.2.
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Figura 17 – A estrutura do grafo de estados de um robô com 4 atuadores.

Fonte: Autor

Note-se que esta estratégia é suficientemente genérica para contemplar casos
de um robô com muitos graus de liberdade, podendo o grafo ser completamente co-
nectado, se for o caso. Porém, a depender do tipo do robô, do joystick disponível, e
do cenário de aplicação, o grafo pode ter menos arestas. Por exemplo, em um cenário
onde o joystick está limitado a mudar apenas um atuador por vez por meio de peque-
nos incrementos, o número de arestas no grafo fica reduzida, já que se pode podar as
arestas correspondentes aos casos em que dois ou mais atuadores mudam simultane-
amente. Esta poda é importante porque permite a redução do consumo de memória e
tempo de processamento no grafo pelo uso de representações esparsas.

3.3 Processo proposto
O processo geral proposto para o sistema está dividido em três fases funda-

mentais, executadas sequencialmente: Coleta, Aprendizagem e Execução, conforme
ilustrado na Figura 18. As próximas seções descrevem, em detalhes, cada uma destas
etapas.

Figura 18 – Divisão das fases do processo de execução do sistema

Fonte: Autor

3.3.1 Coleta
Nesta fase, as demonstrações são fornecidas pelo usuário por meio de entradas

recebidas pelo joystick. Estas entradas são mapeadas em estados do grafo e armaze-
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nadas para servir como base de conhecimento para o sistema PbD.

Após a preparação do grafo, as demonstrações são coletadas da seguinte forma:
a cada entrada fornecida pelo usuário no joystick, o robô muda os estados de seus
atuadores no sentido de realizar um movimento da série de movimentos necessários
para que o manipulador consiga cumprir determinada tarefa até o final. Ao executar a
tarefa por completo, o usuário forneceu à base de conhecimento uma demonstração
de como realizar a atividade em observação. Desta forma, cada demonstração é o re-
sultado de uma sequência de movimentos fornecidos pelo usuário/programador, que
expressam ao robô como ele deve se comportar, para cumprir uma determinada tarefa.
Do ponto de vista da estratégia proposta, a tarefa executada pelo usuário é modelada
na forma de um caminho sobre o grafo de estados.

Como podemos observar na fase de Coleta ilustrada na Figura 18, o usuário
pode transmitir ao sistema tantas demonstrações da tarefa quanto deseje. O conjunto
de todas estas demonstrações formam a base de conhecimento do robô que será
utilizada na fase de Aprendizagem propriamente dita. Note-se que o pressuposto bá-
sico da aprendizagem do robô é que quanto maior a base de conhecimento (ou seja,
quanto maior o número de demonstrações fornecidas pelo usuário), mais preciso será
o robô ao decidir como desempenhar a tarefa.

3.3.2 Aprendizagem
O processo de aprendizagem do robô é subdividido em duas etapas fundamen-

tais. A primeira, denominada Treinamento, realiza a adaptação dos pesos do grafo de
acordo com a base de conhecimento. Neste momento o robô não realiza nenhum mo-
vimento, o algoritmo apenas manipula os pesos das arestas do grafo. A segunda etapa
do processo de aprendizagem, denominada Inferência, tem como finalidade selecio-
nar uma sequência de movimentos para realizar a tarefa, desprezando as imprecisões
do ensino.

A base de conhecimento formada após o término da fase de coleta (Figura
19(a)) é composta pelas demonstrações dadas pelo usuário que, em última análise,
correspondem a diversos caminhos percorridos no grafo de estados de um nó inicial até
um nó final. Assim, o Treinamento é realizado percorrendo novamente os caminhos e
reforçando as arestas percorridas. Cada aresta do grafo de estados é incrementada
em 1 para cada demonstração que utilize esta aresta (fase ilustrada na Figura 19(b)),
com isso, as arestas mais visitadas indicam que esse movimento é desejado para a
tarefa, pois foi realizado com mais frequência. As arestas não visitadas são, por fim,
removidas do grafo, as arestas em cinza representam esta remoção na Figura 19(b).

Após o Treinamento, vem a etapa da Inferência. O primeiro passo na etapa
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Figura 19 – Etapas do Processo de Aprendizagem para 3 demonstrações: (a) base de
conhecimento inicial; (b) base de conhecimento após o treinamento; (c)
base de conhecimento após a escolha dos nós final e inicial; (d) base de
conhecimento após a escolha do maior caminho.

Fonte: Autor

de Inferência é escolher os nós inicial e final. Em ambos os casos, escolhe-se o nó
por meio de eleição, isto é, o nó que foi mais utilizado como nó inicial (final) de cada
uma das demonstrações na base de conhecimento é escolhido para ser o nó inicial
(final) do caminho que o robô aprenderá. Em caso de empate na eleição, escolhe-se
qualquer um dentre os nósmais votados. Note-se que, em alguns casos, pode-se evitar
o cálculo do nó inicial fazendo com que o robô parta sempre de uma mesma condição
inicial previamente configurada. A fase de seleção dos nós inicial e final é ilustrada na
Figura 19(c), em que o nó vermelho representa o nó inicial e o nó verde representa o
nó final.

Definidos os nós inicial e final, o caminho de interesse é aquele de maior dis-
tância, i.e., aquele cuja soma dos custos é a maior. A seleção do maior caminho no
grafo é ilustrada na Figura 19(d), com os nós marcados de azul representando o cami-
nho de maior distância entre os vértices inicial e final. Assim, pode-se perceber, que
este é caminho que provavelmente contém o conjunto de movimentos que o robô deve
descrever para bem executar a tarefa.

O problema computacional da escolha do caminho de interesse é conhecido
como problema do maior caminho sem ciclos, que é um problema NP-Difícil (GAREY;
JOHNSON, 1979). A Equação 3.1 descreve formalmente o problema, onde p é um
caminho pertencente ao conjunto de todos os caminhos sem ciclos do grafo P(G).

maximizar
p∈P(G)

∑
e∈p

w(e) (3.1)

Para solucionar este problema, utilizou-se a seguinte heurística: a partir do grafo
obtido após o Treinamento e o passo da escolha dos nós inicial e final, cria-se um novo
grafoGI com os mesmos nós e arestas, mas com os pesos das arestas definidos como
w(eI) = 1/w(e). A solução da Equação 3.2, que é o menor caminho em GI , tenderá a
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refletir o maior caminho em G.

minimizar
pI∈P(GI)

∑
eI∈pI

w(eI) (3.2)

Esta heurística, embora não solucione o problema geral do maior caminho, se
encaixa bem neste problema, dado que os caminhos obtidos a partir das demonstra-
ções tendem a ser muito próximos e, dessa forma, a escolha pelo menor caminho evita
considerar movimentos pouco repetidos (que terão peso alto no grafo GI), já que estes
podem ser considerados como erros, o que mitiga as imprecisões.

3.3.3 Execução
Após ter passado por todo o processo de Coleta e Aprendizagem, o sistema

entra na fase final relacionada a execução da tarefa aprendida. Neste momento, de
posse de um caminho obtido na etapa de Inferência, o robô possui uma sequência de
estados selecionados que consiste de uma série de movimentos específicos e neces-
sários, para que a tarefa possa ser reproduzida autonomamente. A Figura 20 mostra
como é feita a interação entre o sistema e o usuário para decidir qual será o modo de
execução da tarefa do manipulador robótico.

Figura 20 – Caixa de diálogo para modo de execução da tarefa

Fonte: Autor

O sistema PbD proposto possui duas opções para reprodução da atividade. Na
primeira ele reproduz a atividade repetidas vezes, até que o usuário desligue o sistema
manualmente, indicando que o robô deve parar. Este modo é ideal para realizar ativi-
dades por um longo período de tempo quando não se tem conhecimento do momento
em que o robô deve parar especificamente.

Na segunda opção o usuário deve informar ao robô a quantidade de vezes
que a tarefa deve ser reproduzida. Ao contrário da primeira opção, esta é ideal para
atividades em que o usuário sabe exatamente o momento em que o robô deve cessar
suas atividades.
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3.4 Implementação da proposta
Para implementação da proposta descrita utilizou-se um manipulador robótico

com movimentos simplificados - sem utilidade para o meio industrial - denominado Me-
Arm Robot Arm - Your Robot - V1.0 (ROBOTICS, 2016), com quatro servomotores do
tipo Micro Servo 9g SG90 TowerPro responsáveis por fornecer os graus de liberdade
ao robô. Este equipamento possui apenas 25 centímetros de tamanho e sua estrutura
é montada em acrílico. A Figura 15 ilustra o robô utilizado.

Para fornecer os pulsos elétricos necessários para configuração dos servomo-
tores do robô, uma placa Arduíno Uno foi utilizada. A Figura 21 apresenta os quatro
servomotores. Três dos quatro servomotores atuam nos movimentos estruturais do
robô e um servomotor é exclusivo para abertura e fechamento da garra (Claw). O
primeiro (Middle), representa o grau de liberdade relacionado a base. Com esse ser-
vomotor o robô consegue mover-se tanto para esquerda quanto para direita, dentro
dos limites previamente configurados. O segundo (Left) está relacionado à altura que
o manipulador pode alcançar, desta forma pode-se elevar e descer o braço. O terceiro
(Rigth) está relacionado a um grau de liberdade complementar, com ele o manipulador
consegue um movimento para frente e para trás para auxiliar na manipulação de um
objeto.

Figura 21 – Esquemático das ligações entre o Arduino e os Servomotores

Fonte: Retirado de (ROBOTICS, 2016)

O sistema PbD foi implementado em Python 2.7 com o auxílio da biblioteca
python-igraph 0.7.01 para manipulação de grafos 2. Este sistema é executado em um
laptop HP COMPAQ Presario CQ43, sistema operacional Windows 7 de 32 bits, pro-
1 http://igraph.org/python/
2 Código disponível em: https://github.com/FelipeOliveiraTI/TCC_Felipe_2016.1.git
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cessador Intel Pentium P6200 2.13GHz e memória RAM 4GB. O usuário interage com
o sistema por meio do teclado e do joystick ligado via porta USB.

Durante o uso do robô, as fases do processo PbD são exibidas na tela para
que o usuário possa acompanhar os modos de operação do robô. Os comandos para
movimentação do robô são transmitidos do laptop para o Arduino via uma porta serial.

A Figura 22 mostra como foram integrados todos os componentes utilizados
para realização do trabalho. Da esquerda para direita, a seta de cor preta representa
a conexão entre o joystick e o laptop feito por meio de uma porta USB, o notebook
ilustrado representa onde o sistema é executado, e por último a seta azul representa
a conexão entre o computador e a placa Arduíno responsável por fornecer os pulsos
para o giro dos servomotores.

Figura 22 – Arquitetura geral do sistema

Fonte: Autor
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4 Avaliação e Resultados

Este capítulo descreve as avaliações da estratégia proposta e seus respectivos
resultados a partir de sua implementação em um manipulador robótico.

4.1 Avaliação de custo de memória e processamento
O programa dispõe de duas fases fundamentais relativas ao processamento

da funcionalidade de Aprendizagem da tarefa, a primeira se chama Treinamento e a
segunda Inferência, foi observado um custo computacional diferente entre essas duas
fases. O experimento realizado se baseou em repetir 30 vezes cada fase do processo,
afim de obter o dados relativos ao tempo de execução de cada uma, com um conjunto
de 10 demonstrações previamente fornecidas ao programa.

A Tabela 4 mostra os dados colhidos do experimento, onde a primeira coluna
representa os dados relativos ao tempomédio de execução de cada fase em segundos,
a segunda coluna se refere ao desvio padrão, as colunas terceira e quarta estão os
dados referentes ao Mínimo e Máximo dos tempos respectivamente, e por último o
Intervalo de confiança.

Tabela 4 – Resultados da análise do custo computacional

Média Desvio Padrão Mínimo Máximo Intervalo de Confiança
Treinamento 2,07 0,007 2,04 2,07 (2,063 : 2,068)
Inferência 0,23 0,007 0,22 0,27 (0,227 : 0,232)
Total 2,30 0,011 2,27 2,34 (2,291 : 2,299)

O tempo total médio observado apenas para execução da fase de Treinamento,
foi de pouco mais de 2 segundos, comparando com tempo total do processo de progra-
mação do robô por demonstração, que é em média de 15 minutos para cada conjunto
de dez demonstrações, essa média observada na fase de treinamento é mínima, con-
tribuindo significativamente com a diminuição do tempo que o robô deve ficar parado
aguardando o treinamento.

Para a fase de Treinamento, o custo computacional é linear com o número dos
vértices, já para a fase de Inferência, o custo computacional é quadrático para o nú-
mero de vértices do grafo, provocado pela execução do Algoritmo de Dijkstra. Contudo,
podemos observar que teoricamente, o tempo relativo a fase de Inferência deveria ser
superior em relação à fase de Treinamento, pois um custo computacional quadrático
tende a ser mais elevado que um linear, porém, podemos observar na tabela, que
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os resultados são invertidos, ou seja, os custos relativos a fase de Treinamento são
superiores aos da fase de Inferência.

Este fato pode ser explicado, devido a maneira que o sistema foi desenvolvido,
pois para implementação da fase de Treinamento, foi utilizado a biblioteca Python-
igraph, esta é um wrapper para o igraph do C/C++, enquanto para a fase de Inferência,
uma função responsável por executar o algoritmo foi chamada diretamente, execu-
tando em uma biblioteca em C.

4.2 Avaliação do aumento de demonstrações
O objetivo desta avaliação é verificar como o aumento do número de demonstra-

ções impacta na diminuição das imprecisões da tarefa realizada. Desta forma, pode-se
indicar se a abordagem PbD proposta neste trabalho é suficiente para fazer com que
um robô seja capaz de aprender como executar uma tarefa dentro dos pressupostos
determinados no Capítulo 3.

A tarefa a ser executada compreende em controlar o robô para descrever um
circuito pré-definido em um plano, de modo que o manipulador robótico seja capaz de
traçar este caminho com um marcador de texto comum acoplado à sua garra. A Figura
23 mostra o circuito utilizado. Os quadrantes marcados de cinza representam o cami-
nho por onde o usuário deve manipular o robô, simulando a pintura sem o marcador
de texto. O resultado do treino do robô é a linha do marcador de texto (na cor verde).
Os quadrantes marcados de azul e amarelo representam os pontos de início e fim da
tarefa, respectivamente. Os quadrantes marcados de vermelho representam os erros
realizados pelo robô ao pintar um quadrado fora do caminho específico. Na represen-
tação em questão, foram calculados 6 erros. Esses erros foram tomados como métrica
de avaliação.

Figura 23 – Representação do circuito a ser seguido na tarefa.

Fonte: Autor
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4.2.1 Método do experimento
O experimento foi realizado com 20 participantes, com cada um deles apre-

sentando demonstrações da mesma tarefa ao robô. Como mostrado na Figura 23, o
usuário, utilizando um joystick, manipula o robô para seguir o caminho em cinza im-
presso em papel ajustado a uma base fixa utilizada em todos os testes. Cada usuário
executou um número de demonstrações diferente dentre quatro níveis: 3, 5, 7 e 10
demonstrações. Os usuários não sabiam o número de demonstrações que fariam, a
priori, apenas o condutor do experimento tinha essa informação, e este solicitava mais
demonstrações até que fossem atingidos o total previsto para o teste. Ao fim das de-
monstrações do usuário, o algoritmo era executado e o resultado do robô (a trilha
desenhada no papel) era armazenada para computação dos resultados. Note-se que
ao final do experimento tem-se exatamente 5 usuários para cada número de demons-
trações.

Na escolha dos participantes não foram consideradas características dos usuá-
rios como sexo, escolaridade ou idade. Porém, para nivelar os usuários no uso do joys-
tick, cada usuário teve cinco oportunidades para realizar a tarefa, antes da execução
própria do experimento. Isto foi necessário, porque a habilidade do usuário influencia
nestes resultados.

4.2.2 Resultados Obtidos
Os resultados das demonstrações de cada usuário em cada categoria podem

ser vistos nas figuras do Apêndice A. A Tabela 5 sumariza estes resultados apresen-
tando as estatísticas básicas dos erros em cada categoria. A partir da segunda coluna
têm-se, respectivamente: o total dos erros computados, a média de erros, o desvio pa-
drão desta média, os valores mínimos emáximos e, por último, na sétima coluna, estão
os valores referentes ao Intervalo de Confiança, considerando 95% de confiança.

Tabela 5 – Estatísticas dos erros computados referentes a cada categoria do experi-
mento

Categoria Total Média Desvio Padrão Mínima Máximo Intervalo de Confiança

3 50 10,0 6,60 3 18 (4,01 ; 15,99)
5 22 4,40 3,05 0 8 (1,63 ; 7.17)
7 26 5,20 4,27 1 10 (1,33 ; 9,07)
10 12 3,67 3,78 0 9 (0,23 ; 7,10)

Deve-se observar, em primeiro lugar, a alta variabilidade nos resultados. O coe-
ficiente de variação é de mais de 60% em todas as categorias, chegando a ultrapassar
100% no caso com 10 demonstrações. Isto ocorre devido a discrepância na habili-
dade dos usuários. O resultado do aprendizado do robô para um dos usuários que
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fez apenas 3 demonstrações, por exemplo, alcançou apenas 3 erros. Enquanto que
o aprendizado do robô para um outro usuário com 10 demonstrações foi de 9 erros.
Em outras palavras, um usuário com apenas 3 demonstrações ensinou ao robô um
caminho melhor do que aquele obtido por um usuário que teve a chance de fazer mais
demonstrações.

Em segundo lugar, pode-se notar uma melhora significativa no modo de execu-
ção da tarefa realizada pelo robô, provocado pelo aumento no número de demonstra-
ções fornecidas pelo usuário ao sistema. A diferença mais considerável foi em relação
as categorias com 3 e 10 demonstrações.

Devido à pequena quantidade de amostras (5 por categoria) utilizadas no expe-
rimento, não é possível afirmar com certeza estatística que houve redução na média.
Os intervalos de confiança sobrepostos reforçam esta observação. Contudo, pode-se
observar que as trajetórias descritas pelo robô treinado com apenas 3 demonstrações
obteve uma média de 10 erros computados, enquanto que para categoria 10, foi obser-
vado umamédia de 3,6 de erros, refletindo uma diminuição de 64% entre as categorias.

Ainda para a categoria 3, onde os cinco usuários forneceram cada um, três
demonstrações de como executar a tarefa, foi computado um total de 50 erros. Por
outro lado, os circuitos obtidos pelos aprendizados com 10 demonstrações apresentam
12 erros computados no total, traduzindo uma melhora de 76% na execução da tarefa,
quando comparado com a categoria 3.

Ao longo do experimento, observou-se ainda o tempo de execução das demons-
trações de cada participante. E o tempo de treinomáximo foi de 15minutos. Além disso,
outro dado interessante, é que o número de vértices que compõem o caminho inferido
no processo de Aprendizagem, foi em média de 28 nós para um conjunto de 10 de-
monstrações fornecidas. Assim, o robô precisa executar essa quantidade movimentos
para reproduzir a atividade pretendida. Podemos observar que essa quantidade de
movimentos está relacionada a esta tarefa em particular, já que esta quantidade de
movimentos depende diretamente da tarefa que o robô deve executar.
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5 Conclusão

O presente trabalho apresentou e avaliou uma estratégia para a programação
por demonstração de robôs baseada em teoria dos grafos. A técnica se aplica à progra-
mação de robôs para tarefas repetitivas na indústria e assume que o usuário demonstra
a tarefa que o robô deve executar através de um joystick, não necessitando que o robô
faça uso de sensores para capturar o movimento do usuário ou para certificar-se de
sua própria posição no ambiente.

A programação de tarefas complexas por meio de teach pendants pode se tor-
nar morosa devido à imprecisões introduzidas durante a fase de programação do robô.
Assim a estratégia proposta neste trabalho permite que o robô execute tarefas mesmo
na presença de imperfeições que o próprio programador possa cometer durante a
execução da tarefa. Para mitigar o efeito destes erros, o usuário realiza diversas de-
monstrações de uma mesma tarefa para que o robô consiga inferir a melhor forma de
executá-la a partir dos movimentos mais frequentes nas demonstrações.

Para composição da base de conhecimento do robô, assume-se que esse pos-
sui atuadores discretos. Desta maneira é possível modelar os graus de liberdade dos
atuadores do robô em nós de um grafo de estados. Adicionalmente, as arestas deste
grafo são criadas de acordo com as limitações de movimento relativas à própria estru-
tura do robô. O aprendizado ocorre quando, a cada demonstração feita pelo usuário,
as arestas relacionadas aos movimentos são reforçadas. Assim, ao encontrar o maior
caminho direto, tem-se o conjunto de movimentos desejados para que o robô execute
a tarefa. Dada a complexidade do problema, utiliza-se uma heurística para solucioná-lo
em tempo viável.

Aplicou-se a estratégia proposta a um manipulador robótico simples composto
por três servomotores para a realização da tarefa de seguir com uma caneta um circuito
desenhado em um papel. Para verificar a eficácia da estratégia e os ganhos obtidos
com o aumento do número de demonstrações, foram realizados experimentos com um
total de 20 participantes. Cada participante executou um número diferente de demons-
trações da mesma tarefa e se verificou que a quantidade de erros média diminuiu em
64% com o aumento do número de demonstrações de 3 para 10. Este experimento
também demonstrou que o tempo de treino foi no máximo de 15 minutos para um parti-
cipante que realizou 10 demonstrações. Desta forma, é possível observar que a técnica
proposta tem potencial para simplificar o treinamento de um robô pelo uso de um mero
joystick, sem necessidade de conhecimento de programação baseada em texto, além
de potencialmente reduzir o tempo com o robô parado ao evitar que o usuário tenha
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que reprogramar o robô no caso de imprecisões.

5.1 Limitações da proposta
Para o sistema proposto funcionar, o robô precisa possuir motores discretos, ou

seja, eles precisam ter informações pertinentes aos graus de configurações dos ângu-
los de todos os motores, sem isto, fica impossível gerar a base de conhecimento do
sistema baseado em grafo. Outra limitação é o fato do robô precisar ter um computador
trabalhando em conjunto diretamente, pois nele fica a CPU para realizar a execução
do programa bem como a unidade de memória responsável por mantê-lo.

5.2 Trabalhos futuros
Como trabalhos futuros espera-se investigar o uso desta técnica em tipos dife-

rentes de robôs para a execução de tarefasmais complexas possivelmente comparando-
a ao uso de teach pendants. Espera-se ainda investigar heurísticas alternativas que
ampliem as possibilidade de aplicação da estratégia.

Uma outra proposta seria a implantação de uma placa Raspberry Pi no robô,
para que o programa desenvolvido execute diretamente nele, sem a necessidade de
um computador trabalhando em conjunto, integração de um novo joystick mais sofis-
ticado para tornar o controle do robô mais intuitivo, além de aumentar o número de
comandos enviados para o robô diretamente do controle.
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