“%g
UNIVERSIDADE

@ FEDERAL RURAL

m DE PERNAMBUCO
X~

Sl

Sistemas de Informacado
UFRPE

Felipe Victor de Sa Oliveira

Programacao por demonstracao de um
manipulador robético utilizando uma

abordagem baseada em grafos

Recife

2016

Felipe Victor de Sa Oliveira

Programacao por demonstracao de um manipulador

robotico utilizando uma abordagem baseada em grafos

Monografia apresentada ao Curso de Ba-
charelado em Sistemas de Informacéao da
Universidade Federal Rural de Pernam-
buco, como requisito parcial para obtencao
do titulo de Bacharel em Sistemas de Infor-
macgao.

Universidade Federal Rural de Pernambuco — UFRPE
Departamento de Estatistica e Informatica

Curso de Bacharelado em Sistemas de Informacéao

Orientador: Glauco Goncalves
Coorientador: Victor Medeiros

Recife
2016

Aos meus pais, com carinho e dedicagéo.

Agradecimentos

Agradecgo primeiramente a Deus, por ter me fornecido a fé necessaria para
nunca desistir desta jornada t&o dificil, com ele eu pude acreditar que tudo era pos-
sivel.

Agradeco aos meus pais Jodo Carlos e Aparecida pelo apoio total desde do pri-
meiro dia de aula até o dia de hoje, que apesar de todas as dificuldades enfrentadas ao
longo de todos esses anos, nunca deixaram de lutar para que eu conseguisse chegar
até o final.

Agradego ao meu segundo pai, meu irmao, Francisco Vanderlei, que nunca
mediu esforcos para me fornecer tudo que fosse necessario para que eu cursasse
uma graduagdo, sem nunca precisar se preocupar com nada além dos estudos.

Agradec¢o ao meu irméao e divisor do mesmo ventre, meu gémeo Fabio Oliveira,
que sempre me serviu como exemplo de determinacado e sabedoria, gracas a ele eu
puder acreditar mais em mim e na minha capacidade de aprender tudo aquilo que eu
estivesse disposto.

Agradeco a minha melhor amiga, companheira, namorada, noiva e futura es-
posa, Maria Luisa, que foi fundamental em todo esse processo, me acalmando nos
momentos de nervosismo e frustragdes, me encorajando em todos os desafios, que
acompanhou todo meu processo de amadurecimento como pessoa e como cidadao,
gue nunca e em nenhum momento, desacreditou da minha capacidade de ir cada vez
mais longe.

Agradecgo a todos meus amigos pelos momentos de distragdes, alegrias e acon-
selhamentos durante todo esse tempo, em especial a Vitor Hazin, Fabricio Luna e
Raphael Uchéa.

Agradecgo aos meus orientadores, Professores Glauco Gongalves e Victor Me-
deiros, pela paciéncia e confianga que depositaram em mim ao longo de todo desen-
volvimento deste trabalho, sempre me motivando a fazer ainda melhor e gragas a eles
isso tudo foi possivel.

Agradeco as alunos do Jua Labs por toda a troca de conhecimento realizada
durante todo o periodo, em especial aos alunos Daniel, Jodo, Filipe e Nichene que me
ajudaram diretamente em fases fundamentais do projeto.

Por fim e ndo menos importante, agrade¢o aos meus professores da UFRPE
do campus de Serra Talhada, que foram fundamentais para construir minha base de
conhecimento ao longo do curso. Muito obrigado a todos!

“Milagres acontecem quando a gente vai a luta!”
(Sérgio Vaz)

Resumo

A cada dia que passa os robés estado ficando mais inteligentes e autbnomos. Fazer
com que um robé aprenda uma nova tarefa sem ser necessario ter acesso a seu cédigo
fonte desperta bastante interesse, pois traz beneficios como a redug¢ao de custos com
manutencgao de programas e aumento da produtividade na industria.

Sistemas baseados em Programagao por Demonstragao (Programming by Demons-
tration - PbD) tém como objetivo fazer com que um robd seja capaz de aprender e
reproduzir a atividade demonstrada, sem a reprogramacéo direta de seu cédigo fonte,
ou seja, em PbD o robd deve se autoprogramar para se adequar a tarefa a ele imposta.
Algumas formas de PbD empregam cameras, sensores e software complexo para que
o robd aprenda a partir da observagao da tarefa, sem necessidade de um programador.
Diversamente, uma abordagem mais barata, faz uso de controles complexos (teaching
pendants) para programar o robd enquanto a tarefa é executada. Esta programacéao
exige que o programador seja especialista ndo apenas na tarefa a ser executada mas
tenha habilidade no uso do controle. Além disso, a introducéo de imprecisdes no mo-
mento da programagao exige um maior tempo com o robd parado e sem produzir.

Neste trabalho, apresenta-se uma estratégia PbD baseada em teoria dos grafos para
programacgao de rob6s sem recursos de sensoriamento. Esta estratégia tem duplo ob-
jetivo: a) permitir que usuarios sem conhecimento de programagao possam programar
robds por meio de um joystick simples; e b) potencialmente reduzir o tempo de progra-
macé&o permitindo que o usuario forneca demonstragdes de uma mesma tarefa para
mitigar imprecisdes introduzidas pelo usuario ou pelo ambiente durante as demonstra-
coes.

Implementada em um manipulador robdtico, 20 usuarios diferentes experimentaram
a estratégia proposta na execugdo de uma mesma tarefa, porém com quantidades
diferentes de demonstracées. Como resultado, constata-se que o aumento do numero
de demonstragdes reduziu em até 76% o total de erros na execugao da tarefa com um
tempo maximo de programagao de 15 minutos. Desta forma, é possivel observar que
a técnica proposta tem potencial para simplificar o treinamento de um robé pelo uso
de um mero joystick, sem necessidade de conhecimentos de programacao baseada
em texto, além de potencialmente reduzir o tempo com o robé parado.

Palavras-chave: Programacao por Demonstragcéo, Robdtica, Teoria dos Grafos.

Abstract

Every to day the robots are becoming more intelligent and autonomous. Making a robot
learn a new task without having to update its source code arouses great interest as it
brings benefits such as reduced costs with maintenance programs and increase pro-
ductivity in the industry.

Systems based on Programming by Demonstration PBD aims at making a robot able
to learn and perform the demonstrated activity without the direct reprogramming of its
source code, ie PBD robot should autoprogramar to suit the task he imposed. Some
forms of PBD employ cameras, sensors and complex software for the robot to learn
from observation of the task, without a programmer. By contrast, a cheaper approach
makes use of complex teaching pendants controls to program the robot while the task is
performed. This program requires that the programmer is an expert not only on the task
at hand but has the ability to control the use. Furthermore, introducing inaccuracies in
the time of programming requires a longer with the robot stopped and without producing.

In this paper, we present a PBD strategy based on graph theory for robots without
sensing capabilities programming. This strategy has a double purpose: a) allow users
without programming knowledge to program robots through a simple joystick; and b)
potentially reduce programming time by allowing the user to provide demonstrations
of the same task to mitigate inaccuracies introduced by the user or the environment
during the demonstrations.

Implemented in a robotic manipulator, 20 different users experienced the proposed
strategy in the execution of the same task, but with different amounts of demonstrations.
As a result, it is found that increasing the number of statements reduced by up to 76%
of the total errors in the task execution with a maximum time of 15 minutes schedule.
Thus, it can be seen that the proposed technique has the potential to simplify training
a robot by using a simple joystick, without the need for text-based programming skills,
and potentially reduce the time to stop the robot.

Keywords: Programing by demonstration, Robotics, Graph Theory.

Lista de ilustracoes

Figura 1 — Robds da Fabricante de Automdveis Tesla em Fremont, California. .
Figura 2 — Evolugdo dos teach-pendants
Figura 3 — Categorias da Automatic programming (Programag¢ao Automatica) .
Figura 4 — llustracdo do problema Sete Pontes de Konigsberg.
Figura 5 — Representacao de grafos: G1 ndo-direcionado e G2 direcionado . .
Figura 6 — Representagdo de um Grafo Ponderado
Figura 7 — Tabela e Grafo representando o funcionamento do Algoritmo de Dijks-

tra . .
Figura 8 — Tabela e Grafo relacionado ao vértice A
Figura9 — Tabela e Grafo relacionado ao vérticeD
Figura 10 — Tabela e Grafo relacionado ao vértice C
Figura 11 — Tabela e Grafo relacionado ao vértice F
Figura 12 — Tabela e Grafo relacionado ao vérticeB
Figura 13 — Tabela e Grafo relacionado ao vérticeE
Figura 14 — Representagcao de um grafo por meio da uma Matriz de Adjacéncias
(a) e de uma Lista de Adjacéncias (b)
Figura 15 — Relacao entre graus dos motores e um estadodografo
Figura 16 — Exemplo de Joystick para uso no sistema proposto.
Figura 17 — A estrutura do grafo de estados de um robd com 4 atuadores.
Figura 18 — Divisdo das fases do processo de execugado do sistema
Figura 19 — Etapas do Processo de Aprendizagem para 3 demonstragées: (a)
base de conhecimento inicial; (b) base de conhecimento apds o trei-
namento; (c) base de conhecimento apds a escolha dos nés final e
inicial; (d) base de conhecimento apds a escolha do maior caminho.
Figura 20 — Caixa de dialogo para modo de execugdo datarefa
Figura 21 — Esquematico das ligagdes entre o Arduino e os Servomotores
Figura 22 — Arquitetura geraldosistema
Figura 23 — Representacao do circuito a ser sequidonatarefa.

13
15
18
26
26
27

28
28
29
29
29
30
30

31
33
34
36
36

Tabela 1
Tabela 2
Tabela 3
Tabela 4
Tabela 5

Lista de tabelas

Principais diferencas entres os tipos de programacgao
Resumo dos sistemas PbD Observados
Exemplo de estado de um manipulador robético com 4 atuadores. .
Resultados da analise do custo computacional
Estatisticas dos erros computados referentes a cada categoria do
experimento

Lista de abreviaturas e siglas

PbD Programming by Demonstration (Programagao por Demonstragao)
CPU Unidade Central de Processamento

GUI Graphical User Interface (Interface Grafica do Usuario)

3D Trés Dimensodes

USB Universal Serial Bus (Porta Universal)

SVM Support Vector Machine (Maquina de vetores de suporte)

1.1
1.2
1.3
1.4
1.5

2.1
2.1.1
2.1.2
2.2
221
2.2.2
2.3

3.1
3.2
3.3
331
3.3.2
3.33
3.4

4.1
4.2
421
4.2.2

5.1
5.2

Sumario

Listadeilustracées, 7
INTRODUCAOt ittt e e et e et e et e e e e 12
A importancia darobética.o 0oL 12
Programacao por demonstracao 13
Justificativa e motivacaoo 14
Objetivos e 16
Organizacaodo trabalho 16
REFERENCIAL TEORICOt ittt e e 17
Programacaoderobos Lo oL, 17
Sistemas de Programacdo Manual 18
Sistemas de Programacdo Automatica 20
Caracteristicas dos sistemas PbD 21
Programming by Demonstration na Robética 22
Sistemas robéticos baseadosem PbD L. 23
Teoriados Grafos 25
PROPOSTA e e e e e e e e e e e e 32
Modelos Robéticos Lo 33
Modelo da Base de Conhecimento 34
Processo proposto 36
Coleta e e e 36
Aprendizagem L L e 37
Execucdo 39
Implementacdao da proposta L. 40
AVALIACAO E RESULTADOS ot i it e e e e e 42
Avaliacao de custo de memdria e processamento 42
Avaliacao do aumento de demonstracées 43
Método do experimento e 44
Resultados Obtidos 44
CONCLUSAOt e e e e e 46
Limitacbes da propostao L. 47
Trabalhos futuros oo 47

A.l
A.2
A3
A4

REFERENCIAS e e e e e e e e e e s 48

APENDICEt e e e 50
Testesda Categoria 3 50
Testes da Categoria b 51
Testes da Categoria 7 53

Testes da Categoria 10 54

12

1 Introducao

Este Capitulo apresenta o problema abordado e os objetivos deste trabalho.
Primeiramente, procura-se contextualizar como as maquinas revolucionaram a indus-
tria como um todo, bem como mostrar a importancia dos robds quando inseridos em
linhas de produgdo, além de apresentar uma visao geral sobre a Programacgao por
Demonstracao (Programming by Demonstration - PbD), que é o foco deste trabalho.
Neste capitulo também serdo apresentados a justificativa e motivagao para realizagao
do trabalho, assim como a organizagao do documento.

1.1 A importancia da robotica

Desde a revolugao industrial ocorrida na Europa em meados do século XVIII, ati-
vidades repetitivas e cansativas nas linhas de montagem que eram desempenhadas
basicamente por seres humanos e suas pesadas ferramentas de trabalho, comeca-
ram a ser realizadas por maquinas cada vez mais complexas. Os produtos deixaram
de ser manufaturados e passaram a ser maquino faturados, o que permitiu a produgao
em massa, aumentando a oferta de produtos no mercado e reduzindo seus pregos
(CAVALCANTE; SILVA, 2011). Também foi possivel reduzir os altos custos com ca-
pital humano além do ganho significativo no tempo e na produtividade. A Revolucéo
Industrial teve grande relevancia para a sociedade atual e principalmente para o sur-
gimento da revolugao tecnoldgica vivida até os dias atuais. (CAVALCANTE; SILVA,
2011).

Com o avango tecnolégico ao longo dos anos, as fabricas se tornaram cada vez
mais automatizadas. Os robds comegaram a ser inseridos nas linhas de montagem e
bragos roboéticos que realizavam tarefas limitadas foram evoluindo e se tornando mais
versateis e precisos, executando multiplas tarefas, inclusive. A Fabricante de Automo-
veis Tesla, por exemplo, utiliza em sua fabrica em Fremont, Califérnia, robés como os
ilustrados na Figura 1 que podem fazer até quatro tarefas: solda, rebites, colagem e
instalagdo de um componente (MARKOFF, 2012). Esta versatilidade dos robés revolu-
cionou a forma de produgao proporcionando ganhos significativos para os proprietarios
de fabricas ao redor do mundo. Segundo os dados observados por (MARKOFF, 2012):
“‘esses equipamentos tendem a gerar grandes lucros a longo prazo, ja que uma ma-
quina com custo médio de 250 mil délares substituindo dois empregados com salario
de 50 mil ao ano deve economizar 3,5 milhdes ao fim de seus 15 anos de vida util”.

Capitulo 1. Introdugéao 13

Figura 1 — Robés da Fabricante de Automodveis Tesla em Fremont, Califérnia.

Fonte: Noticia do site Gizmodo/Austalia’.
1.2 Programacao por demonstracao

Um robd é basicamente um conjunto de equipamentos integrados, composto
por hardware e software, que necessita ser programado para que consiga realizar uma
atividade util para os seres humanos. Mesmo para executar a mais basica operacgao,
um robd precisa ter um software em execugédo. Este sistema tem como fungao moni-
torar os sensores do robd e acionar os seus motores fazendo com que ele se mova
dentro dos limites dos seus graus de liberdade.

Para (BIGGS; MACDONALD, 2003), a area relacionada especificamente a pro-
gramacéao de robds pode ser dividida em Automatic programming (Programagéo au-
tomatica) e Manual Programming (Programagao Manual). Na primeira, ndo se tem
acesso direto ao cdodigo fonte que programa o robd. (BIGGS; MACDONALD, 2003)
destacam que “esse tipo de sistema oferece pouco ou nenhum controle direto sobre
0 codigo do programa que o robd ira executar [...], o cédigo do robd € gerado a partir
de informacéo introduzida no sistema por uma variedade de formas indiretas”. Geral-
mente o robd permanece em execugao enquanto € programado, oferecendo entdo uma
programagcao online. Na programac¢ao manual, diferentemente, o usuario/programador
precisa criar o programa que o robd deve interpretar e, consequentemente, executa-lo
no robd para que adquira um comportamento. O robd nao precisa estar presente en-
quanto é realizada a programacao. No capitulo 2 serdao apresentados mais detalhes
sobre cada categoria.

A forma mais comum de Programacéo automatica chama-se Programming by
Demonstration. Esta abordagem permite que pessoas sem conhecimento formal em
programagao possam efetivamente programar um robd para que realize uma atividade
util em um curto intervalo de tempo e de forma intuitiva. PbD pode permitir que usua-

Capitulo 1. Introdugéao 14

rios finais ensinem, por meio de demostracdes, as tarefas que o robé deve executar
(FORBES et al., 2014). Toda a complexidade das numerosas linhas de codigo neces-
sarias para o treinamento do robé é completamente abstraida para um plano real e
observavel, ou seja, onde o usuario consegue visualizar o robd fisicamente realizando
os movimentos. A necessidade de PbD sera cada vez mais percebida no futuro, con-
forme afirma (EKVALL, 2005): “a préxima geragao de robds sera colocada em nossas
casas e [...] a variedade de tarefas dos robds nos ajudara significativamente e nédo sera
possivel pré-programar robds para todas essas tarefas”.

Sistemas baseados em Programacgao por Demonstragao, utilizam diversos mé-
todos como interface entre o usuario/programador e o robd para o qual se pretende
transmitir um comportamento. (TEIXEIRA, 2009) destaca os dispositivos e estratégias
que se pode usar em PbD, por exemplo, a fala, controles com botdes, desenhos, ges-
tos entre outros.

Aplicagcbes de PbD avangadas sao fortemente dependentes da integragao de
sensores internos e externos, como sensores de forga/torque e visdo (WAHL; THO-
MAS, 2002). Esses sensores s&o responsaveis por ser os “olhos” do robd e, a partir
deles, os robds conseguem “enxergar” tanto a tarefa que esta sendo demonstrada
quanto o ambiente em que esta inserido. Porém em um cenario onde tais recursos
sensoriais complexos ndo sédo possiveis, pode-se fazer uso de controles complexos
denominados teach-pendants (como os que sao ilustrados na Figura 2). Por estes con-
troles, um usuario especialista demonstra a tarefa posicionando o robé e programando
comandos simples como andar em linha, descrever um arco, ligar um atuador etc, que
correspondem aos movimentos a serem executados pelo robd para realizar a tarefa
(BIGGS; MACDONALD, 2003). Assim, o rob6 armazena em memoria estes comandos
e 0s executa para reproduzir a tarefa.

1.3 Justificativa e motivacao

Os manipuladores roboéticos sdo recursos fundamentais nas fabricas por todo
o mundo e novos investimentos sao feitos em pesquisas buscando melhorar ainda
mais essa tecnologia. A complexidade do software usado para comandar essas ma-
quinas e a demanda crescente por robés flexiveis e reprogramaveis tém aumentado a
necessidade por sistemas de programacgao por demonstragédo. (EKVALL, 2005). Sem
a utilizacdo de um sistema baseado em PbD, para que maquinas realizem as tarefas
atribuidas a elas, faz-se necessaria a contratagao de profissionais especialistas em
programacgao de computadores e microcontroladores e a necessidade de uma forte
integracéo entre estes profissionais e a equipe de produgédo que conhece em detalhes
as tarefas que o rob6 deve executar. Estas exigéncias levam ao aumento de custos

Capitulo 1. Introdugéao 15

Figura 2 — Evolugao dos teach-pendants

e

=

F.onte: (BOUCHARD, 2011) .

administrativos e de pessoal.

PbD simplifica esta tarefa de reprogramacgao do rob, permitindo que os profissi-
onais especialistas nas atividades de produgao possam diretamente programar estas
maquinas (TEIXEIRA, 2009). Sistemas mais complexos de PbD utilizam numerosos
recursos de hardware, como sensores e cameras, para comunicagao entre o usua-
rio/programador e o robd. Sem esses recursos o robé fica impossibilitado de observar
quais tarefas o usuario deseja transmitir a ele, bem como as caracteristicas do ambi-
ente em que esta inserido.

Os teach-pendants permitem que os usuarios programem os robds, fornecendo
as coordenadas e comandos especificos para realizacdo dos movimentos necessarios
para execucgao da tarefa. Sdo exemplos de comandos: descreva um movimento em
linha desta coordenada a esta outra, descreva um movimento em arco passando por
estas coordenadas etc. O sistema armazena esses comandos e, quando solicitado,
reproduz os movimentos. Caso movimentos indesejados sejam transmitidos, o usuario
tem a possibilidade de apagar os comandos e coordenadas e em seguida fornecer
outras, ainda no momento da programagao.

O PbD baseado em teach-pendants permite o uso de robds mais simples, isto
€, que nao precisam de sensores, cameras e software mais complexo. Por outro lado,
exige um profissional que seja especialista tanto no uso do controle para programacéao
do robd quanto na tarefa a ser executada. Além disso, a presenga de imprecisdes na
execucao da tarefa que passem desapercebidas pelo programador no momento da
programagao soO serao detectadas no momento dos testes, o que exigira um maior

Capitulo 1. Introdugéao 16

tempo com o robd afastado da linha de produgéo, para reprogramacgéo.

Neste trabalho, apresenta-se uma abordagem que utiliza técnicas da teoria dos
grafos para realizar PbD de robés. Esta abordagem pretende, ao mesmo tempo, re-
duzir o tempo de programacao total, removendo a necessidade de reprogramacgoes, e
permitir que usuarios sem conhecimento de programacgao possam programar o robd
por meio de controles simples. A ideia basica desta abordagem € permitir que o usua-
rio/programador, utilizando um joystick, possa oferecer diversas demonstra¢des da
mesma tarefa e que o robdé aprenda os movimentos demonstrados por seu usuario
mesmo quando os movimentos sao repetidos com imprecisao. De posse do conjunto
de demonstragdes, o sistema PbD extrai deste conjunto uma representacao que reflete
a melhor maneira de reproduzir a tarefa pretendida, mitigando imprecisdes tanto das
demonstragdes fornecidas pelo usuario quanto do préprio robd.

1.4 Objetivos

O objetivo principal deste trabalho € desenvolver uma abordagem para realizar
PbD para a programacao de robés. Utilizando técnicas de grafos, a abordagem pro-
posta recebe um determinado numero de demonstracdes diretamente do usuario por
meio de um joystick, e permite inferir a tarefa demonstrada mitigando imprecisdes, sem
que seja necessario ter acesso ao codigo fonte do programa do robd. Como objetivos
especificos pretende-se:

 Definir um modelo de base de conhecimento para o robd para armazenamento
dos movimentos do robo;

» Descrever, em detalhes, um algoritmo para inferéncia da tarefa a partir do modelo
de memoria; e

* Implementar e avaliar os modelos propostos.

1.5 Organizacao do trabalho

Além deste Capitulo introdutério, o presente trabalho possui mais 4 capitulos e
esta organizado da seguinte forma: o Capitulo 2 descreve todo o conceito relacionado
a Programming by Demonstration (PbD) e também mostra trabalhos relacionados na
area; o Capitulo 3 descreve toda a implementacao realizada para criagao do sistema
PbD com base em grafos; o Capitulo 4 apresenta todos os experimentos e seus res-
pectivos resultados. Por fim, Capitulo 5 expde as conclusdes obtidas neste trabalho.

17

?2 Referencial Tedrico

Este Capitulo tem como objetivo contextualizar as categorias e métodos para
realizar a programacao de um robd (Secéo 2.1) e descrever com mais clareza a Progra-
macao por Demonstragao (Secgao 2.2), mostrando desde a concepgao dos primeiros
sistemas baseados em PbD, até serem inseridos no campo de estudo da robética. Por
fim, serdo apresentados elementos da Teoria dos Grafos (Se¢do 2.3) necessarios para
a compreensao do modelo de base de conhecimento e dos algoritmos propostos neste
trabalho.

2.1 Programacao de robés

Um rob6 € um tipo de sistema embarcado, que é geralmente implementado
como uma maquina eletromecénica controlada por programas de computador com o
objetivo de realizar uma atividade util aos seres humanos. Mesmo para executar a
mais basica operagéo, um robd precisa ter software em execug¢ao para monitorar os
seus sensores e acionar os seus atuadores fazendo com que execute as tarefas para
as quais esta programado, dentro dos limites dos seus graus de liberdade.

A area relacionada especificamente a programacgao de robds pode ser dividida
em Manual Programming (Programacao Manual) e Automatic programming (Programa-
¢ao automatica) (BIGGS; MACDONALD, 2003). Na primeira, o usuario/programador
precisa diretamente desenvolver o programa e, consequentemente, executa-lo no robd
para que adquira um comportamento. O robd nao precisa estar presente enquanto é re-
alizada a programacgéao. Assim como a programagao de computadores convencionais,
a Programacao Manual pode ser feita por meio de linguagens textuais como C, Java,
Python etc, ou por meio de modelos graficos que permitam a geragdo automatica de
cédigo textual tais como linguagens de programacéo visuais baseadas em blocos. A
Secgao 2.1.1 apresenta detalhes sobre estas categorias.

Na Programacao Automatica, diferentemente, o usuario ndo precisa ter acesso
direto ao cddigo fonte do software de controle do robd, ou seja, o comportamento exe-
cutado pelo robé é obtido a partir de inferéncias sobre sua base de conhecimento. Esta
base, por sua vez, € composta pelo tratamento, realizado por algoritmos especificos,
dos dados capturados pelos sensores do robd. Este tipo de programagéo abrange
trés categorias ilustradas na Figura 3 e detalhadas na Secgéao 2.1.2: learning systems
(Sistemas de Aprendizagem), Programming by Demonstration (Programacgao por De-
monstragao) e Instructive Systems (Sistemas Instrutivos).

Capitulo 2. Referencial Tedrico 18

Figura 3 — Categorias da Automatic programming (Programacgao Automatica)

Programacgdo
Automadtica

Sistema de
Aprendizagem

Sistemas

Programacéo por .
Instrutivos

Demonstragdo

|| Joystick/Controle
Toque

Gesto/Voz
Viséo

Fonte: Adaptado de (BIGGS; MACDONALD, 2003).

2.1.1 Sistemas de Programacdo Manual

A forma mais comum de programar manualmente um robd € a utilizagéo de lin-
guagens de programacgao convencionais como C, Java, Python e etc, para o desenvol-
vimento do cddigo. Os usuarios desses sistemas precisam entender especificamente
sobre a linguagem que se pretende utilizar, conhecer as APIs de programacgao do robé,
bem como ser especialista na tarefa que se quer programar, ou ter acesso direto a
equipe de producao que domine estas tarefas. A Programag¢ao Manual se torna mais
adequada quando o ambiente em que o robd esta inserido ndo requer mudancgas con-
tinuas, obrigando o rob6 a alterar seu comportamento para se ajustar as necessidades
de um momento especifico.

A Programacdo Manual é classificada pelor autores (BIGGS; MACDONALD,
2003) em duas categorias principais, sao elas: Text—-based Systems (Sistemas Base-
ado em Texto) e Graphical Systems (Sistemas Graficos).

Em Sistemas Baseados em Texto, um programador precisa escrever codigos
textualmente para implementar a inteligéncia do robd, desta forma, o processo para
concepgao de um comportamento robético, demanda tanto profissionais em programa-
cao textual, quanto especialista na tarefa em particular que o dispositivo deve executar,
nesta, a forma da programacao utilizada para o desenvolvimento do programa, € o que
necessariamente difere um sistema de outro.

Dois principais métodos levam em consideracgao a especificidade da linguagem
utilizada, o primeiro caracteriza-se pela auséncia de uma linguagem padronizada en-
tre diferentes fabricantes de robds, ou seja, neste método utiliza-se uma linguagem
proprietaria apropriada para o modelo do robd ou do fabricante, desta forma, se uma

Capitulo 2. Referencial Tedrico 19

fabrica utiliza robés de muitos fabricantes diferentes, entao ela tera que treinar seus
programadores para cada um, ou pagar para o fabricante desenvolver os programas
necessarios (BIGGS; MACDONALD, 2003), o que representa uma significante adver-
sidade para realizar a programagao de um robd.

O segundo método, ao contrario do primeiro, utiliza uma linguagem aberta de
propésito geral, o termo “Geral”, traduz uma linguagem de multiplos propdsitos de alto
nivel, um exemplo disto é a linguagem C++. Essa abordagem é especialmente utilizada
em cenarios envolvendo pesquisas, onde ha uma sele¢cado de uma linguagem para ser
utilizada como base, afim de acolher as necessidades do projeto.

Por fim, outro método interessante na programagao manual, caracteriza-se por
sistemas programados por uma lista de instru¢des especificas, ou seja, o usuario se-
leciona manualmente em uma lista, quais comportamentos o robd deve adquirir em
um dado momento. Desta forma, o usuario ndo precisa ser programador a nivel de
linhas de codigo, a evolugao desta abordagem fez com que esse método se tornasse
mais tarde, uma das categorias na Programagéo Automatica. A principal desvantagem
desse método € que o robd ndo é capaz de aprender novos comportamentos, ele é
capaz apenas de adquirir comportamentos previamente definidos, os tornando inuteis
em cenarios onde ha mudancgas constantes de atividades.

Os softwares de programacao baseados em componentes graficos proporcio-
nam aos programadores uma alternativa mais produtiva para a programagéo ao ofe-
recer objetos graficos para representacdo dos movimentos dos robds. Nao se tem
acesso direto a linhas de codigo de modo textual, mesmo assim, essa abordagem nao
se caracteriza como uma forma automatica de programacgao devido ao fato dos usua-
rios/programadores ainda precisarem fornecer os comandos necessarios ao sistema
manualmente (como especificar agdes e fluxos do programa, para que isso reflita em
um comportamento caracteristico do robd). Por ser um método mais simples de pro-
gramacao, caso o usuario adquira um treinamento adequado, o proprio especialista
no desenvolvimento da tarefa no mundo real pode ser capaz de programar um robd
para reproduzi-la, sem a necessidade de outro programador trabalhando em conjunto
(BIGGS; MACDONALD, 2003). Para a programacao manual, esta € a abordagem mais
préxima de uma programacao automatica. A principal adversidade neste método € a
demora resultante na configuragao de cada tarefa que o rob6 deve executar, pois deve
ser feito individualmente para cada atividade especifica. Além disso, para um usuario
se tornar um programador utilizando esse método, 0 mesmo precisa passar por um
treinamento bastante especifico para aprender a utilizar o programa.

Capitulo 2. Referencial Tedrico 20

2.1.2 Sistemas de Programacao Automatica

Os sistemas de aprendizagem, uma das categorias de programag&o automa-
tica, sdo aqueles que tem como caracteristica a capacidade de aprender a realizar uma
determinada atividade de maneira autbnoma, tomando decisées por conta prépria, a
partir da habilidade de realizar autoexploracdo. Geralmente, sao utilizadas técnicas
de inteligéncia artificial conexionista, como redes neurais, para fornecer a inteligéncia
necessaria para que o robd aprenda a partir de erros do passado e tome decisdes
fundamentais com o objetivo de nao repeti-las no futuro. Nessa abordagem o tempo
se torna um dos problemas cruciais, uma vez que, para o robd aprender corretamente
como proceder, ele precisa realizar inumeras tentativas até conseguir alcangar o obje-
tivo pretendido.

A programacao por demonstragéo €, dentro da Programacao Automatica, o meé-
todo mais comum para realizar a programagao de um robd. Tem como principal caracte-
ristica a necessidade de um instrutor que ensine ao robé como realizar uma dada ativi-
dade. Diferentes tipos de interfaces podem ser utilizadas entre o usuario/programador
e o sistema robotico com o intuito de transmitir o comportamento. Convencionalmente,
utilizam-se teach-pendants para demonstrar os movimentos que o robd deve realizar
(BIGGS; MACDONALD, 2003). Contudo, métodos mais naturais de comunicagao tam-
bém sao possiveis, como gestos ou até mesmo a prépria voz do usuario. Sistemas PbD
também podem captar demonstracgdes, por meio do toque do usuario/programador no
robd, movendo-o diretamente no sentido da atividade desejada. Por ser o foco deste
trabalho detalharemos outros aspectos do PbD na Segao 2.2.

Por fim, os Sistemas Instrutivos tem como principal caracteristica, a necessi-
dade de receber instru¢cdes sequenciais do usuario, para que o robd realize uma ati-
vidade ja conhecida. Essa técnica € mais adequada para comandar os robds para
realizar tarefas que eles ja foram treinados ou programados para executar (BIGGS;
MACDONALD, 2003). Desta forma, o usuario/programador apenas ordena que o robd
realize uma atividade, e por sua vez, o robd entra em operagao a partir do conheci-
mento prévio de como proceder. Os métodos mais utilizados para transmitir instrugbdes
para o rob6 sao por meio de reconhecimento de gestos e voz.

A utilizagdo dos métodos de Programacéo Automatica séo interessantes quando
os robds estéo inseridos em ambientes onde ha uma necessidade continua de alternan-
cia no seu comportamento, como por exemplo, robds que precisam executar inumeras
atividades em linhas de producao nas industrias, onde a busca continua no ganho de
produtividade, demanda robds cada vez mais versateis e inteligentes o suficiente para
aprender a executar novas atividade com rapidez e eficiéncia. Sistemas baseados em
Programagao Automatica procuram facilitar a forma como um usuario ou, até mesmo,
o ambiente transferem um comportamento desejado para um robd, reduzindo a neces-

Capitulo 2. Referencial Tedrico 21

sidade de um especialista em programacgéao.

A Tabela 1 apresenta os principais tipos de sistemas, a categoria deles em
relacéo ao tipo programacéo utilizada (Automatica ou Manual) e as diferengas entre
as tecnologias comumente utilizadas para cada um. Essas tecnologias s&o essenciais
para fornecer aos sistemas os dados e/ou comandos necessarios para a programagao
do robé.

Tabela 1 — Principais diferengas entres os tipos de programagao

Tipo dos Sistemas Categoria da Programacado Tecnologias utilizadas

Redes Neurais,

Sistemas de Aprendizagem Automatica
Sensores.

Teach pendant, Joystick,

Programagao por Demonstragdo Automatica N
Sensores, Cameras.

Sensores, voz,

Sistemas Instrutivos Automatica
gestos etc.

Linguagens como

Sistemas Baseados em Texto Manual C++, Java e Python.

Componentes Gréficos,
Sistemas Graficos Manual Softwares Graficos
de Simulagao.

2.2 Caracteristicas dos sistemas PbD

O primeiro sistema baseado em Programagéao por Demonstragao - PbD inicial-
mente n&o foi projetado para a aplicagdo em robds. No ano de 1975, o sistema Pygma-
lion - um programa para estimular o pensamento criativo em pessoas - foi desenvolvido
por David C. Smith (CYPHER; HALBERT, 1993), dando entdo os primeiros passos na
ideia de um ser humano programar um sistema apenas demonstrando a ele como re-
alizar determinada tarefa, sem ser necessario ter acesso ao codigo fonte do sistema.
Desta forma os usuarios de sistemas baseados em PbD, ndo necessariamente preci-
sam ter conhecimento sobre programacgéo, ja que devem apenas demonstrar ao sis-
tema como realizar uma determinada tarefa e, por sua vez, o proprio sistema deve
aprender e criar um programa interno que realize a tarefa refletindo as acbes do usua-
rio.

Uma das motivagdes para o avango no estudo da PbD foi a mudanga de perfil
dos usuarios de computadores ao longo do tempo. Nas décadas de 60 e 70, a maio-
ria dos usuarios tinham conhecimento sobre programacao e construiam seus préprios
programas, porém, com o passar do tempo e a sofisticagado dos aplicativos, os usua-
rios passaram reconfigurar seus aplicativos e computadores sem programar e sem a

Capitulo 2. Referencial Tedrico 22

necessidade de um especialista. Segundo (CYPHER; HALBERT, 1993) “usuarios de
computadores contemporaneos sao 'usuarios finais’, o que significa que eles estdo no
final do processo de programacgado de computadores, longe do programador”. Desta
forma, sistemas capazes de se reprogramar se mostraram alternativas interessantes
para se adequar a mudancga do perfil dos usuarios finais de computadores.

O maior potencial para o uso de programacgao por demonstragao € automatizar
atividades repetitivas (CYPHER; HALBERT, 1993). Realizar manualmente uma tarefa
repetitiva por um longo periodo de tempo ou por uma grande quantidade consecu-
tiva de vezes além de ser tedioso se torna propicio ao aparecimento de erros. Utilizar
maquinas para reproduzir tais atividades além de favorecer a redugédo do tempo de
produgdo de uma industria, racionaliza os seus gastos com méo de obra, que podem
ser direcionados a outras atividades.

Os sistemas baseados em PbD sao caracterizados por (CYPHER; HALBERT,
1993) em quatro dimensdes. A primeira dimensdo € denominada Uses and Users
(Usos e Usuarios), e busca identificar qual o exato dominio da aplicagédo e quem sao
0s seus usuarios. A segunda dimensao € denominada User Interaction (Interagdo com
Usuario) que leva em consideragao a forma com que o usuario se comunica com o
sistema para gerenciar fungdes no programa. A terceira dimensdo denominada como
Inference (Inferéncia), busca explicar como um sistema elege uma compreensao ge-
neralizada para as demonstracdes realizadas pelo usuario, baseado em uma amostra
limitada de exemplos. A ultima dimensao e ndo menos importante, € denominada de
Knowledge (Conhecimento), que basicamente refere-se ao momento de tirar por con-
clusao, quais informacdes o sistema pode usar.

A compreenséo destas caracteristicas podem tanto ajudar na avaliagdo e com-
paracao entre diferentes sistemas PbD, como, quando tomadas como modelo, auxiliar
projetistas a definir a contribuigcdo dos seus sistemas no campo de pesquisa da PbD
(CYPHER; HALBERT, 1993).

2.2.1 Programming by Demonstration na Robética

Programacao de robbs por Demonstragao (PbD), tem se tornado um tema cen-
tral na robdtica que se estende por diversas areas de pesquisa tais como: Interacéo Hu-
mano Robd, Aprendizado de Maquina, Visao de Maquina e Controle Motor (BILLARD
et al., 2008). No inicio da década de 80, PbD surgiu como uma alternativa promissora
para o setor industrial que demandava uma grande quantidade dispositivos robéticos
nas suas linhas de produg¢do. Com as técnicas PbD, o processo manual de programa-
¢cao dos equipamentos por codificagao poderia se tornar completamente automatizado.

PbD também se refere a aprendizagem por imitagdo e € um mecanismo pode-

Capitulo 2. Referencial Tedrico 23

roso para reduzir a complexidade dos espacos de busca para a aprendizagem (BIL-
LARD et al., 2008). N6s, seres humanos, ao observarmos agdées que geram resulta-
dos positivos ou negativos, intuitivamente reduzimos nossa busca por uma solugéo
possivel para um problema em observagéo, baseando-se em um modelo que gere um
resultado significativo.

A ideia basica da Programagéao por demonstragao € permitir que o robd observe
um ser humano executar uma tarefa para extrair o maximo possivel de informagdes
a partir da demonstragdo e mapea-la em uma representagao abstrata e generalizada
da tarefa demonstrada (ZOLLNER, 2004). As vantagens oferecidas pela utilizagdo de
PbD podem ser observadas quando se considera que o processo de reprogramagao
de um robd através de codificacao direta a cada nova tarefa que ele pretende executar,
demanda gastos com capital humano especializado e, a depender da experiéncia do
programador, maior tempo de programacao total por conta da introdu¢do de impreci-
sdes no codigo.

Sistemas PbD mais complexos utilizam diversos recursos de hardware, como
sensores e cameras, para possibilitar o robd observar a tarefa que tera que reproduzir,
bem como dados inerentes ao ambiente o qual esta inserido, quando esses recursos
nao sao possiveis, outra forma de repassar informacgdes necessarias para o robd sobre
a atividade pretendida € com a utilizacdo de um teach-pendant.

O uso deste artefato permite que o usuario que programa a tarefa, seja 0o mesmo
especialista da atividade no mundo real, desta forma nao ha necessidade de um progra-
mador trabalhando em conjunto, para fornecer os comandos necessarios robd, como
exemplo, para demonstrar a um robé como ele deve realizar uma atividade de solda de
uma peca metalica qualquer, o préprio soldador pode programar o robd por demons-
tracao de como fazer a tarefa. Imprecisées fornecidas pelo usuario ndo observadas no
momento da demonstracio da tarefa, sé serdo percebidas da fase de teste, podendo
acarretar perca de tempo e produtividade.

2.2.2 Sistemas robdticos baseados em PbD

Um sistema baseado em PbD é utilizado em (Z6LLNER, 2004) para observar,
aprender e generalizar atividades executadas por seres humanos, para um manipula-
dor robético de dois bracos. Neste trabalho um ciclo para Programacéo por Demons-
tracao é proposto para transferir as demonstra¢des da tarefa para o robd, com objetivo
de absorver o maior numero possivel de informacdes da demonstragdo. Com posse
dessas informagdes o sistema cria uma abstracao mais generalizada da tarefa com a
finalidade de aproveita-la em outros modelos diferentes de robés. O clico PbD é divi-
dido em trés fases fundamentais. Na primeira fase é feita a percepgao e interpretacéo
da demonstracao fornecida pelo usuario, para perceber a tarefa recursos como came-

Capitulo 2. Referencial Tedrico 24

ras, sensores tateis e luvas com rastreadores magnéticos séo utilizados. Na segunda
fase € gerada a abstragao da tarefa por meio de uma generalizagdo. Na ultima fase do
ciclo é feito o mapeamento das tarefas abstratas para os robés especificos.

Em outro estudo realizado por (EKVALL, 2005), um sistema de aprendizagem
por demonstragao € integrado a um sistema de planejamento de nivel de tarefa. O
esquema geral do sistema, se baseia em um professor fornecer as demonstragdes de
como realizar uma determinada tarefa, e por sua vez o robd utiliza de entradas visuais
para observar tais demonstragdes, em seguida o robd planeja a tarefa e por fim ele a
executa.

Trés maneiras diferentes podem ser utilizadas para o aprendizado da tarefa.
A primeira, denominada de Imitation Learning (Aprendizagem de Imitagdo), € comu-
mente usada para representar a tarefa de aprendizagem em um nivel baixo, conside-
rando reproducao de trajetorias e/ou configuragdes conjuntas do robé (EKVALL, 2008).
Com esta técnica é apenas possivel reproduzir uma tarefa utilizando as mesmas coor-
denadas, sem mudar nada no trajeto. A segunda maneira, denominada de Learning in
Dialogue with Teacher (Aprendizagem em Dialogo com Professor), um humano realiza
o papel de um professor, demonstrando a tarefa enquanto explica o passo a passo.
Restricdes podem ser concebidas pelo humano professor, fazendo com que o robd
seja disciplinado, aprendendo como deve ou n&o agir, prevenindo decisdes erradas.
Por ultimo, tem-se a Generalizing from Multiple Observations (Generalizacédo de Mul-
tiplas Observagdes), um robd deve ser capaz de aprender a realizar uma nova tarefa
a partir de um conjunto de demonstragdes, extraindo deste conjunto, um modelo geral
de execugao da tarefa. Varias observagdes da mesma tarefa podem ser utilizadas para
formar um modelo mais geral, e portanto, flexivel da tarefa (EKVALL, 2008).

Em (FORBES et al., 2014), um arcaboucgo PbD é proposto. A partir de uma de-
monstragao inicial, o robd recolhe mais informagdes de um conjunto de demonstragdes
providos por diversas pessoas diferentes e utilizando a demonstragao inicial como se-
mente. Na sequéncia, o robd busca cenarios onde a demonstragao classificada como
semente nao ira funcionar mas que provavelmente seja remediavel, por fim o robd
executa a agao no novo cenario usando as demonstracdes selecionadas.

Dividida em duas diferentes fases denominadas de Task Learning (Tarefa de
Aprendizagem) e Task Refining (Tarefa de Refino) respectivamente, (MOLLARD et al.,
2015) apresentam uma abordagem para realizar programacgao robdtica por demons-
tracao que contempla Feedback e Transferéncia de Conhecimento. Para o feedback,
palavra utilizada para expressar uma mensagem de retorno como resposta a alguma
acao realizada, o sistema utiliza uma GUI para interagdo com o usuario por uma re-
presentacado 3D. Desta forma, o usuario pode idealizar intuitivamente o planejamento
da tarefa, bem como corrigir possiveis imprecisdes antes mesmo da execugao. Este

Capitulo 2. Referencial Tedrico 25

sistema de simulacao 3D permite ao usuario reparar possiveis imprecisdes.

A Tabela 2 expde um resumo dos sistemas PbD observados, onde na segunda
coluna apresenta o modo que é realizado a demonstragao da tarefa para o robd, na
terceira coluna apresenta qual a aplicabilidade desses sistemas e por fim quais sdo as
técnicas utilizadas nos trabalhos.

Tabela 2 — Resumo dos sistemas PbD Observados

Referéncia I\D/Ic(a)rcrls):;ragéo Aplicagao Técnicas Utilizadas
Redes Neurais,SVM,
Robd com dois bragos cameras, sensores
(ZOLLNER, 2004) Gestual N > Oragos, tateis,luvas com
Robd Humanoide.
rastreadores
magnéticos.
Manipulador simples rastreador magnético
(EKVALL, 2005) Gestual para atividades gnetico,
caseiras sensores de medicao.
Manipulador de Sistema de interface
(EKVALL, 2008) Entrada Visual iniputa para programar
objetos simples.
a tarefa.
(FORBES et al., 2014) Toque no robs Manipulador de Sistema grafico de
objetos simples. simulacéo.

Robé para montagem GUI de simulagao 3D

(MOLLARD et al., 2015) Simulagao 3D
de produtos. para programar a tarefa.

2.3 Teoria dos Grafos

Os primeiros estudos relacionados a teoria dos grafos foram conduzidos cerca
de trés séculos atras. Na época, o estudo que se tornou mais relevante para o surgi-
mento e exploragdo da teoria foi publicado por Leonhard Euler, no ano de 1736, sob
o titulo "A solugao para o problema relativo a geometria da posig¢ao”, que investiga o
problema conhecido como Sete Pontes de Kdnigsberg.

Atualmente, chamada de Kaliningrado e pertencente ao territorio russo, a cidade
de Konigsberg é atravessada por um rio, formando duas ilhas, e possui sete pontes
que foram criadas para conectar todo o complexo, ilustrado na Figura 4. O problema
consiste em, a partir de um determinado ponto, passar por todas as pontes somente
uma vez e retornar ao ponto inicial (CARVALHO, 2005).

A teoria dos grafos na matematica investiga a associagao finita entre compo-
nentes de um determinado grupo, onde cada componente deste grupo € denominado

Capitulo 2. Referencial Tedrico 26

Figura 4 — llustragdo do problema Sete Pontes de Kdnigsberg.

c
Margem C
llha D —» - .
B

Margem B

Fonte: Retirado do artigo (RODRIGUES, 2007).

de vértice ou no, e cada relagdo entre um par de vértices desse mesmo grupo € deno-
minado como aresta. Assim, pode-se entender o grafo como uma estrutura formada
por dois tipos de objetos: vértices e arestas. Cada aresta € um par de vértices, ou seja,
um conjunto com exatamente dois vértices (FEOFILOFF, 2012). Quando estes pares
de vértices sdo ordenados, chama-se o grafo de direcionado, caso contrario, quando
os pares de vértices ndo sdo ordenados, chama-se o grafo ndo-direcionado. Estes ti-
pos de grafos s&o ilustrados na Figura 5. Em G1 as arestas A1, A2 e A3 ndo possuem
direcao, enquanto em G2, como exemplo, as arestas A1, A2 e A3, necessariamente
possuem uma direcao especifica, sempre saindo de um né e entrando em outro né
vizinho.

Figura 5 — Representacao de grafos: G1 ndo-direcionado e G2 direcionado

@ @

Fonte: Autor

Quando as arestas pertencentes a um grafo possuem pesos, este € chamado
grafo ponderado. Neste tipo de grafo, um peso ou conjunto de pesos é associado a
cada aresta, representado da forma w(i, j), ou seja, w(1, 2) € o peso associado a aresta
que une os nos 1 e 2 (CARVALHO, 2005).

Dentro da Teoria dos Grafos, existe um problema computacional conhecido
como Problema do Caminho Minimo, que pode ser caracterizado da seguinte forma:
Dado um grafo ponderado, onde todas suas arestas possuem um peso associado,
deve-se encontrar o caminho de distancia minima entre um vértice inicial A e um vér-
tice final Z. O caminho de distancia minima entre um vértice inicial A e um vértice final
Z é aquele cujo somatorio de todos os pesos das arestas possui valor minimo compa-

Capitulo 2. Referencial Tedrico 27

rado com todos os outros caminhos possiveis entre os vértices A e Z. Para solucionar
esse problema, pode-se usar o Algoritmo de Dijkstra.

Considere o grafo ponderado ilustrado na Figura 6 representando um grafo com
os vertices A,B,C,D,E e F. Para calcular todos os caminhos possiveis, entre o vértice
inicial A e todos os outros vértices do grafo, o uso do Algoritmo de Dijkstra pode ser
vantajoso.

Figura 6 — Representacdo de um Grafo Ponderado

13

Fonte: Autor

Ao iniciar sua execugao, o algoritmo em questao julga que o custo minimo en-
tre o vértice definido como inicial e todos os outros vértices do grafo é preliminarmente
considerada como infinito (=), e na medida que vai avancando esse custo vai sendo
regulado. Sempre quando um caminho é considerado menos custoso, entre dois vérti-
ces (A e D por exemplo), este ultimo vértice é considerado como “Fechado” (o vértice
D no exemplo).

Primeiramente, exceto para o vértice A definido como inicial, a distancia entre
todos os vértices do grafo é considerado infinita (~), para o vértice A é zero. O procedi-
mento executado pelo algoritmo pode ser representado em uma tabela onde a medida
que for avangando os dados vao sendo alterados. Na Tabela mostrada na Figura 7
a primeira linha equivale a representagéo dos vértices do grafo ilustrado ao lado da
Tabela, a segunda linha representa os custos entre os vértices e seus precedentes (o
precedente de um vértice t € o vértice que precede t no caminho de custo minimo de «
para t), que esta representado na terceira linha. Por ultimo estdo os dados pertinentes
a informagao se um vértice esta “Fechado” ou n&o, caso nao, recebem o caractere N,
caso isso seja verdade recebe entdo o caractere S.

Em seguida, o vértice cujo o custo associado a sua aresta for menor, em com-
paracgao a todos os outros, € selecionado e marcado como “Fechado”. Para o exemplo
mostrado na Figura 8 em diante, foi selecionado o vértice A como ponto de partida. Par-
tindo dele, sédo recalculadas os demais custos para os vértices adjacentes que ainda
nao foram visitados, ou seja, possuem na tabela o caractere N na linha “Fechado”.
Quando o custo calculado € menor que o custo anteriormente armazenado, é feita

Capitulo 2. Referencial Tedrico 28

Figura 7 — Tabela e Grafo representando o funcionamento do Algoritmo de Dijkstra

Vértice A|B|C|D]|E]|F
Custo 0 |c0|ocQ |00 [0 |00
precedentes| ' | ' | ' I I
Fechado N[{N|N|[N|N|N

Fonte: Autor

entdo a substituicdo e o vértice por onde esse custo foi calculado, é atribuido como
precedente na tabela.

Na Figura 8 o vértice A foi selecionado e marcado como "Fechado”, todos os
custos relacionados aos vértices adjacentes a ele sdo calculados e substituidos na
Tabela, os vértices nao adjacentes ainda continuam com o valor infinito («).

Figura 8 — Tabela e Grafo relacionado ao vértice A

Vértice B|C|[D]|E]|F
Custo 10|13| 2 o0 | 0O
precedentes AlAlA] "]
Fechado N[N|N|N|N

Fonte: Autor

Continuamente, a mesma légica segue para o segundo passo, ou seja, seleci-
onar os vertices adjacentes que ainda nao foram visitados, marcar aquele que possuir
menor curso associado como “fechado”, e a partir dele realizar os calculos e substituir
na tabela apenas aqueles que possuirem um custo inferir ao anteriormente armaze-

nado na tabela.

Na Figura 9 o vértice D foi selecionado e marcado como "Fechado”, os custos
de C, E e F alterados na tabela. Para os dois ultimos, qualquer valor € menor que
infinito, os precedentes de C, E e F foram alterados para D.

Na Figura 10 o vértice C foi selecionado e marcado como "Fechado”, ele possui
ligacao disponivel apenas com o veértice F, o custo e o precedente de F foram alterados.

Na Figura 11 o vértice F foi selecionado e marcado como "Fechado”, o custo e
o precedente de E foram alterados.

Na Figura 12 o vértice B foi selecionado e marcado como "Fechado”, nenhum

Capitulo 2. Referencial Tedrico 29

Figura 9 — Tabela e Grafo relacionado ao vértice D

Vértice AlB|C E|F
Custo 010 3 18 21
precedentes| A| A | D D|D
Fechado SIN|[N N | N
Fonte: Autor
Figura 10 — Tabela e Grafo relacionado ao vértice C
Vértice Al B D|E|F
Custo 0110 2 (18| 5
precedentes| A | A A|DJ|C
Fechado S|N S|N]|N
Fonte: Autor
Figura 11 — Tabela e Grafo relacionado ao vértice F
Vértice A|B|C|D]|E
Custo 0101 3|2 |13
precedentes| A|A[D | A | F
Fechado SIN|S]|S|N

Fonte: Autor

custo ou precedente foi alterado na tabela.

Na Figura 13 o vértice E foi selecionado e marcado como "Fechado”, nenhum
custo ou precedente foi alterado na tabela.

Ao fim da execugao do algoritimo, quando todos os vértices do grafo s&o visi-
tados e marcados como "Fechados”, a distancia minima entre o vértice definido como
inicial para todos os outros do grafo, estdo disponiveis na tabela, como um exemplo,
o custo minimo para o caminho do vértice A até o vértice F é de 5 indo pelo vértice C.

Como limitagdo do algoritmo de Dijkstra, deve-se observar que os pesos do
grafo ponderado ndo podem conter valores negativos.

Seja G(V, E) um grafo orientado e a um vértice de G, o algoritmo de Dijkstra,

Capitulo 2. Referencial Tedrico 30

Figura 12 — Tabela e Grafo relacionado ao vértice B

Vértice A C|D|EJ|F
Custo 0 312 |13| 5
precedentes | A DIA|[F]|C
Fechado S S|S S
Fonte: Autor
Figura 13 — Tabela e Grafo relacionado ao vértice E
Vértice A|lB|C|D F
Custo 0(10] 3|2 5
precedentes| A| A | D | A C
Fechado S|IS|[S|S S

Fonte: Autor

retirado de (CARVALHO, 2005), pode ser enunciado como:

1. Atribui-se zero a estimativa do custo do vértice a (a raiz da busca) e infinito as
demais estimativas;

2. Atribui-se um valor qualquer aos precedentes;

3. Enquanto houver vértice aberto:

a) Escolha k como o vértice aberto cujo custo seja 0 menor dentre os vértices
abertos;

b) fecha-se o vértice k
c) Para todo vértice j aberto que seja sucessor de k faz-se:

i. soma-se a estimativa do vértice £ com o custo da aresta que une £ a j;

ii. casoasoma sejamenor que a estimativa anterior para o vértice j, substitui-
se o custo e anota-se k como precedente de ;.

A forma como um grafo é representado no computador pode impactar direta-
mente no desempenho de um algoritmo que receba um grafo de entrada e no consumo
de memodria. Os grafos podem ser representados no computador por meio da matriz
de adjacéncias ou da lista de adjacéncias. A matriz de adjacéncias de um grafo com

Capitulo 2. Referencial Tedrico 31

|V'| vértices € uma matriz |V| x |V| de Os e 1s, na qual a entrada na linha i e coluna j
é 1, se e somente se, a aresta (i, j) estiver no grafo (KHAN..., 2016). A Figura 14(a)
ilustra a matriz de adjacéncias do grafo representado na Figura 6.

Figura 14 — Representagcao de um grafo por meio da uma Matriz de Adjacéncias (a) e
de uma Lista de Adjacéncias (b)

ABCDTEF _
Alo 1 1 1 0 o0 Al TB[C|P
Bl|1 00 1 1 0 Bl T1A|P|E
cl1 0 0 1 0 1 Cl T 1AIP|F
pl1 1 1 0 1 1 D_=ABCE|F|
Elo 1 0 1 0 1 El TB|P|F
Flo o 1 1 1 o FLT1C|P|E
(a) (b)

Fonte: Autor

Outra forma de representar um grafo no computador € por meio de uma lista
de adjacéncias. Essa representacdo mantém, para cada vértice do grafo, uma lista
de todos os vértices adjacentes a ele. Tipicamente, tem-se |V| listas de adjacéncias
(KHAN..., 2016). A Figura 14(b) apresenta a representagao por meio de listas de adja-
céncias do grafo mostrado na Figura 6.

32

3 Proposta

Os sistemas PbD mais complexos dispdem, geralmente, de dispositivos senso-
riais e cameras de video para que o robd obtenha dados sobre a tarefa que o usuario
pretende transmitir a ele. Sem esses recursos, contudo, o robd se torna incapacitado
de aprender tais demonstracdes por observacgao, fazendo se entdo necessaria a utiliza-
¢ao de outros métodos. Com o uso de um teach pendant, o usuario/programador pode
programar robds na industria para tarefas repetitivas transmitindo ao robé os coman-
dos sequenciais necessarios para realizar uma tarefa, ndao necessitando que o robd
faca uso de sensores para capturar o movimento do usuario ou para certificar-se de
sua propria posi¢gao no ambiente. Um exemplo de tarefa seria, por exemplo, capturar
um objeto em um ponto A, manipular este objeto, e leva-lo a um ponto B qualquer.

Comumente, o usuario precisaria demonstrar apenas uma vez ao robé a tarefa
a ser executada, contudo o ensino da tarefa pode vir acompanhado por imprecisdes na
demonstragao fornecida pelo usuario (devido a falta de experiéncia na execugao da ta-
refa, por exemplo). Assim, a programacao de tarefas complexas por meio de teaching
pendants pode se tornar morosa devido a imprecisdes introduzidas durante a fase de
programagao do robd, o que obrigaria a uma fase de reprogramacéao, apos a fase de
testes, aumentando o tempo que o robd permanece parado. Retomando o exemplo an-
terior, uma imprecisao pode ocorrer se o usuario, ao manipular o controle, movimentar
o robd por um tragado nao desejado ou pousar o objeto em um ponto diferente de B.

A estratégia proposta neste trabalho permite que o rob6 aprenda uma determi-
nada tarefa mesmo na presenca de imperfeigdes na execugao da tarefa. Para mitigar
o efeito destes erros, o usuario realiza diversas demonstracdes de uma mesma tarefa
para que o robd consiga inferir a melhor forma de executa-la a partir dos movimentos
mais frequentes nas demonstragdes. Além disso, a estratégia permite que a demons-
tracao seja feita por um usuario/programador sem conhecimentos em programagao, o
que potencialmente reduz os custos de programacao.

A estratégia proposta emprega uma abordagem baseada em grafos que deve
ser aplicada a um robd equipado com um conjunto de atuadores que permitam que este
execute tarefas. Para mapear os possiveis estados dos atuadores do robé utiliza-se
um grafo em que cada n6 representa uma configuragao possivel dentro do conjunto de
graus de liberdade dos atuadores do robd. A Figura 15 ilustra a relag&o entre os graus
dos servomotores do robd utilizado neste estudo e um estado do grafo. As arestas
do grafo, por outro lado, representam movimentos possiveis executados pelo robd de
acordo com as limitagdes dos seus atuadores, do joystick utilizado na programagao e

Capitulo 3. Proposta 33

da tarefa realizada. A transigéo de estados, ou seja, o mudanga de um né para outro n6é
vizinho dentro do grafo, passando necessariamente por uma aresta, representa entao
um movimento do robd.

Figura 15 — Relagéo entre graus dos motores e um estado do grafo

nome Grau

BASE ﬂ
ALTURA 90
COMPLEMENTO |80

0

Estado

Fonte: Adaptado de (ELECTRONICS, 2016).

Enquanto o usuario manipula o robd na execugao da tarefa fornecendo coman-
dos de forma sequencial através do joystick, o algoritmo de aprendizado armazena o
caminho feito enquanto percorre o grafo de um no para outro, ou seja, de um estado
para o outro, através das arestas até que a tarefa seja cumprida. Ao término da execu-
cao da tarefa, o usuario forneceu ao robé uma demonstragao possivel de como realizar
a atividade proposta, a qual € armazenada pelo algoritmo. Novas demonstragdes po-
dem ser feitas da mesma forma.

3.1 Modelos Robéticos

O sistema PbD proposto nesse trabalho pode ser implantado em diversos mo-
delos robéticos diferentes, por manter uma abordagem baseada em grafo, onde cada
vértice equivale a um conjunto de graus configurados nos servomotores do dispositivo.
Este conjunto se traduz numa posigao fisica do estado atual do robé no mundo real,
e cada aresta do grafo, equivalente a transicdo de um estado para outro adjacente,
representando um movimento realizado pelo robd.

O primeiro requisito necessario para que o sistema seja implantado em um mo-
delo robdtico candidato é que os atuadores do dispositivo devem ser discretos, ou
devem poder ser discretizados sem perdas para o robd. Em outras palavras, deve-se
dispor de informagdes de todas as possiveis configuragdes que os atuadores do robd
podem assumir. No caso de um laser, por exemplo, pode-se ter niveis como ligado

Capitulo 3. Proposta 34

e desligado, ou ainda niveis discretos de intensidade. No caso de servomotores, por
outro lado, deve-se ter disponivel as posi¢cdes que o motor pode assumir.

Outra caracteristica relevante nos dispositivos robéticos, € que eles nao neces-
sariamente precisam ter sensores responsaveis por captar o ambiente em que estao
inseridos ou para observar as demonstracbées da tarefa. Para o funcionamento, um
simples joystick (como o que esta representado na Figura 16) que acione os atuado-
res do robd pode ser utilizado para indicar os movimentos que o robd deve executar.
Ainda para funcionamento do sistema, o modelo roboético deve possuir CPU e meméria
para o processamento dos dados do programa.

Figura 16 — Exemplo de Joystick para uso no sistema proposto.

Fonte: Retirado de (GENERIC..., 2016)

O sistema PbD apresentado também permite que as entradas possam conter
imprecisdes. Estas podem advir tanto do usuario ao prover diretamente comandos ao
robd através do joystick, quanto pelo proprio meio, que por ser eletrénico, pode estar
sujeito a algum ruido que refletira em um movimento indesejado.

3.2 Modelo da Base de Conhecimento

O modelo da base de conhecimento para o desenvolvimento do sistema pro-
posto utiliza um grafo para representar todos os possiveis estados que o robd pode
alcancar. Este grafo de estados é criado a partir do relacionamento dos possiveis esta-
dos que seus atuadores podem assumir, contendo todos os nds possiveis e todas as
arestas compativeis. Assim, para um rob6é com n atuadores, onde cada atuador possui
um conjunto de estados A; = {s;1, Si2, Si3, ---, Sim }» 0S NGs do grafo G = (N, E) seréo os
elementos do conjunto N = A; x A; x Az x ... x A,,. O total de nés deste grafo é dado
por |N| = |Ay||As||As]...| Anl-

A Tabela 3 exemplifica como sao criados os estados de um rob6é com quatro
servomotores. No caso, as colunas BASE, ALTURA, COMPLEMENTO e GARRA tém
relagao direta as fungdes especificas dos atuadores no robé. A linha Valor indica o an-
gulo do servomotor no caso de BASE, ALTURA e COMPLEMENTO, e indica também
o estado do servomotor GARRA, que é binario (aberta ou fechada). A especificagdo do

Capitulo 3. Proposta 35

valor em cada estado depende do conjunto de graus de liberdade que os servomotores
possuem.

Tabela 3 — Exemplo de estado de um manipulador robético com 4 atuadores.

Nome | BASE | ALTURA | COMPLEMENTO | GARRA
Valor | 90 90 90 0

As arestas do grafo de estados sdo modeladas conforme os possiveis movi-
mentos de cada atuador. Assim, como exemplo, a aresta ey = (5112331, S12.23.31),
refere-se a mudancga do estado 1 do atuador 1 para o estado 2 do mesmo atuador,
conservando os estados dos outros dois atuadores.

A Figura 17 ilustra um recorte do grafo de estados de um robé com quatro atu-
adores. Nele, os trés primeiros atuadores do robd, foi predefinido que podem apenas
ser incrementados ou decrementados do valor 5 (equivalente a angulagéo de um ser-
vomotor, por exemplo) e o ultimo atuador sé pode possui dois estados. O n6 vermelho
A corresponde ao estado atual do robd e possui arestas para sete nos vizinhos, que
serdao um dos nos visitados apds o préximo movimento.

Os graus de liberdade dos servomotores do robé foram configurados para per-
manecer entre 60 e 120 graus, exceto para o servomotor da garra que apenas pode
assumir dois estados (aberto ou fechado). Como exemplo, para o robd realizar um
movimento total para esquerda, o servomotor responsavel pela base do robd, precisa
entdo ir para o grau 60, na mesa logica inversa se o robd realizar um movimento total
para direita, o servomotor da base ira para o grau 120. Por definicdo, o incremento
e decremento dos graus dos servomotores do robd foram configurados passos de 5
graus por vez.

Para o servomotor da garra, o tratamento da configuragdo dos graus de liber-
dade foi implementado direto no Arduino, caso ele receba um valor 0, o grau de liber-
dade do servomotor é configurado para 60 graus, representado visualmente a garra
fechada, caso ele receba um valor 1, o grau € entdo configurado para 120, represen-
tando visualmente a garra aberta.

Como cada vértice do grafo representa uma tupla formada pelo conjunto de
graus de liberdade do robé, ele possui 3 servomotores que vao de 60 a 120 graus em
passos de 5 graus por vez e um servomotor para garra que possui dois estados pos-
siveis, para o sistema desenvolvido, 4394 vértices sao necessarios para representar
todos os estados possiveis do robé.

Deve-se ressaltar ainda que todas as arestas e € E do grafo possuem um
peso w(e), cujo valor inicial € 0. Esses pesos serdo fundamentais para o processo de
treinamento, e serdo discutidos com mais detalhes na Sec¢ao 3.3.2.

Capitulo 3. Proposta 36

Figura 17 — A estrutura do grafo de estados de um robd com 4 atuadores.

Fonte: Autor

Note-se que esta estratégia é suficientemente genérica para contemplar casos
de um rob6 com muitos graus de liberdade, podendo o grafo ser completamente co-
nectado, se for o caso. Porém, a depender do tipo do robd, do joystick disponivel, e
do cenario de aplicagao, o grafo pode ter menos arestas. Por exemplo, em um cenario
onde o joystick esta limitado a mudar apenas um atuador por vez por meio de peque-
nos incrementos, o numero de arestas no grafo fica reduzida, ja que se pode podar as
arestas correspondentes aos casos em que dois ou mais atuadores mudam simultane-
amente. Esta poda é importante porque permite a redugao do consumo de memoria e
tempo de processamento no grafo pelo uso de representacdes esparsas.

3.3 Processo proposto

O processo geral proposto para o sistema esta dividido em trés fases funda-
mentais, executadas sequencialmente: Coleta, Aprendizagem e Execugao, conforme
ilustrado na Figura 18. As proximas se¢des descrevem, em detalhes, cada uma destas
etapas.

Figura 18 — Divisao das fases do processo de execugao do sistema

Coleta Aprendizagem Execucgao

-

[Demonstrag:éo V“’ ‘Treinamento"“Inferéncia: —»| Reprodugéo

A

Fonte: Autor

3.3.1 Coleta

Nesta fase, as demonstracdes sao fornecidas pelo usuario por meio de entradas
recebidas pelo joystick. Estas entradas sdo mapeadas em estados do grafo e armaze-

Capitulo 3. Proposta 37

nadas para servir como base de conhecimento para o sistema PbD.

Apos a preparagao do grafo, as demonstragdes sao coletadas da seguinte forma:
a cada entrada fornecida pelo usuario no joystick, o robé muda os estados de seus
atuadores no sentido de realizar um movimento da série de movimentos necessarios
para que o manipulador consiga cumprir determinada tarefa até o final. Ao executar a
tarefa por completo, o usuario forneceu a base de conhecimento uma demonstragao
de como realizar a atividade em observacao. Desta forma, cada demonstracao € o re-
sultado de uma sequéncia de movimentos fornecidos pelo usuario/programador, que
expressam ao robé como ele deve se comportar, para cumprir uma determinada tarefa.
Do ponto de vista da estratégia proposta, a tarefa executada pelo usuario € modelada
na forma de um caminho sobre o grafo de estados.

Como podemos observar na fase de Coleta ilustrada na Figura 18, o usuario
pode transmitir ao sistema tantas demonstragdes da tarefa quanto deseje. O conjunto
de todas estas demonstracdes formam a base de conhecimento do robd que sera
utilizada na fase de Aprendizagem propriamente dita. Note-se que o pressuposto ba-
sico da aprendizagem do rob6 é que quanto maior a base de conhecimento (ou seja,
quanto maior o numero de demonstragdes fornecidas pelo usuario), mais preciso sera
o rob6 ao decidir como desempenhar a tarefa.

3.3.2 Aprendizagem

O processo de aprendizagem do robé € subdividido em duas etapas fundamen-
tais. A primeira, denominada Treinamento, realiza a adaptagao dos pesos do grafo de
acordo com a base de conhecimento. Neste momento o robd nao realiza nenhum mo-
vimento, o algoritmo apenas manipula os pesos das arestas do grafo. A segunda etapa
do processo de aprendizagem, denominada Inferéncia, tem como finalidade selecio-
nar uma sequéncia de movimentos para realizar a tarefa, desprezando as imprecisdes
do ensino.

A base de conhecimento formada apds o término da fase de coleta (Figura
19(a)) € composta pelas demonstragdes dadas pelo usuario que, em ultima analise,
correspondem a diversos caminhos percorridos no grafo de estados de um né inicial até
um n6 final. Assim, o Treinamento é realizado percorrendo novamente os caminhos e
reforcando as arestas percorridas. Cada aresta do grafo de estados € incrementada
em 1 para cada demonstragao que utilize esta aresta (fase ilustrada na Figura 19(b)),
com isso, as arestas mais visitadas indicam que esse movimento € desejado para a
tarefa, pois foi realizado com mais frequéncia. As arestas néao visitadas sao, por fim,
removidas do grafo, as arestas em cinza representam esta remocao na Figura 19(b).

Apds o Treinamento, vem a etapa da Inferéncia. O primeiro passo na etapa

Capitulo 3. Proposta 38

Figura 19 — Etapas do Processo de Aprendizagem para 3 demonstragoes: (a) base de
conhecimento inicial; (b) base de conhecimento apés o treinamento; (c)
base de conhecimento apds a escolha dos nds final e inicial; (d) base de
conhecimento apds a escolha do maior caminho.

X _j__/>)' o
SINSL TN A E

0 0

F
vl
(a) (b) (c) (d)

Fonte: Autor

de Inferéncia é escolher os nés inicial e final. Em ambos os casos, escolhe-se o n6
por meio de eleigao, isto é, o né que foi mais utilizado como na inicial (final) de cada
uma das demonstragdes na base de conhecimento é escolhido para ser o n¢ inicial
(final) do caminho que o robd aprendera. Em caso de empate na eleicéo, escolhe-se
qualquer um dentre os nés mais votados. Note-se que, em alguns casos, pode-se evitar
o calculo do n¢ inicial fazendo com que o robd parta sempre de uma mesma condicao
inicial previamente configurada. A fase de selegcao dos nés inicial e final é ilustrada na
Figura 19(c), em que o né vermelho representa o no inicial e o n6 verde representa o
no final.

Definidos os nds inicial e final, o caminho de interesse € aquele de maior dis-
tancia, i.e., aquele cuja soma dos custos é a maior. A sele¢do do maior caminho no
grafo é ilustrada na Figura 19(d), com os n6s marcados de azul representando o cami-
nho de maior distancia entre os vértices inicial e final. Assim, pode-se perceber, que
este € caminho que provavelmente contém o conjunto de movimentos que o robd deve
descrever para bem executar a tarefa.

O problema computacional da escolha do caminho de interesse é conhecido
como problema do maior caminho sem ciclos, que é um problema NP-Dificil (GAREY;
JOHNSON, 1979). A Equacgao 3.1 descreve formalmente o problema, onde p € um
caminho pertencente ao conjunto de todos os caminhos sem ciclos do grafo P(G).

maximizar » w(e) (3.1)

G
peP(G) =

Para solucionar este problema, utilizou-se a seguinte heuristica: a partir do grafo
obtido apds o Treinamento e o passo da escolha dos nés inicial e final, cria-se um novo
grafo G! com os mesmos nds e arestas, mas com os pesos das arestas definidos como
w(e!) = 1/w(e). A solugédo da Equagao 3.2, que é o menor caminho em G/, tendera a

Capitulo 3. Proposta 39

refletir o maior caminho em G.

minimizar w(el) (3.2)

Esta heuristica, embora nao solucione o problema geral do maior caminho, se
encaixa bem neste problema, dado que os caminhos obtidos a partir das demonstra-
coes tendem a ser muito préximos e, dessa forma, a escolha pelo menor caminho evita
considerar movimentos pouco repetidos (que terdo peso alto no grafo G¥), ja que estes
podem ser considerados como erros, o que mitiga as imprecisoes.

3.3.3 Execucao

Apos ter passado por todo o processo de Coleta e Aprendizagem, o sistema
entra na fase final relacionada a execucao da tarefa aprendida. Neste momento, de
posse de um caminho obtido na etapa de Inferéncia, o robd possui uma sequéncia de
estados selecionados que consiste de uma série de movimentos especificos e neces-
sarios, para que a tarefa possa ser reproduzida autonomamente. A Figura 20 mostra
como é feita a interagao entre o sistema e o usuario para decidir qual sera o modo de
execucao da tarefa do manipulador robdtico.

Figura 20 — Caixa de dialogo para modo de execug¢ao da tarefa

ESCOLHA UMA DAS (
[1] - EXE

FARA EXECUCAD

Fonte: Autor

O sistema PbD proposto possui duas op¢des para reproducao da atividade. Na
primeira ele reproduz a atividade repetidas vezes, até que o usuario desligue o sistema
manualmente, indicando que o rob6 deve parar. Este modo ¢é ideal para realizar ativi-
dades por um longo periodo de tempo quando n&o se tem conhecimento do momento
em que o robd deve parar especificamente.

Na segunda opg¢ao o usuario deve informar ao robd a quantidade de vezes
que a tarefa deve ser reproduzida. Ao contrario da primeira op¢ao, esta é ideal para
atividades em que o usuario sabe exatamente o momento em que o robd deve cessar
suas atividades.

Capitulo 3. Proposta 40

3.4 Implementacao da proposta

Para implementacao da proposta descrita utilizou-se um manipulador robdtico
com movimentos simplificados - sem utilidade para o meio industrial - denominado Me-
Arm Robot Arm - Your Robot - V1.0 (ROBOTICS, 2016), com quatro servomotores do
tipo Micro Servo 9g SG90 TowerPro responsaveis por fornecer os graus de liberdade
ao robd. Este equipamento possui apenas 25 centimetros de tamanho e sua estrutura
€ montada em acrilico. A Figura 15 ilustra o robé utilizado.

Para fornecer os pulsos elétricos necessarios para configuragado dos servomo-
tores do robd, uma placa Arduino Uno foi utilizada. A Figura 21 apresenta os quatro
servomotores. Trés dos quatro servomotores atuam nos movimentos estruturais do
robé6 e um servomotor é exclusivo para abertura e fechamento da garra (Claw). O
primeiro (Middle), representa o grau de liberdade relacionado a base. Com esse ser-
vomotor o robd consegue mover-se tanto para esquerda quanto para direita, dentro
dos limites previamente configurados. O segundo (Left) esta relacionado a altura que
o manipulador pode alcancar, desta forma pode-se elevar e descer o brago. O terceiro
(Rigth) esta relacionado a um grau de liberdade complementar, com ele o manipulador
consegue um movimento para frente e para tras para auxiliar na manipulagdo de um
objeto.

Figura 21 — Esquematico das ligacdes entre o Arduino e os Servomotores

Middle Left Right Claw

Fonte: Retirado de (ROBOTICS, 2016)

O sistema PbD foi implementado em Python 2.7 com o auxilio da biblioteca
python-igraph 0.7.0" para manipulacéo de grafos 2. Este sistema é executado em um
laptop HP COMPAQ Presario CQ43, sistema operacional Windows 7 de 32 bits, pro-

http://igraph.org/python/
2 Codigo disponivel em: https://github.com/FelipeOliveiraTl/TCC_Felipe_2016.1.git

Capitulo 3. Proposta 41

cessador Intel Pentium P6200 2.13GHz e memoria RAM 4GB. O usuario interage com
o sistema por meio do teclado e do joystick ligado via porta USB.

Durante o uso do robd, as fases do processo PbD sao exibidas na tela para
gue o usuario possa acompanhar os modos de operacgéo do robd. Os comandos para
movimentagao do robd sao transmitidos do laptop para o Arduino via uma porta serial.

A Figura 22 mostra como foram integrados todos os componentes utilizados
para realizagao do trabalho. Da esquerda para direita, a seta de cor preta representa
a conexao entre o joystick e o laptop feito por meio de uma porta USB, o notebook
ilustrado representa onde o sistema é executado, e por ultimo a seta azul representa
a conexao entre o computador e a placa Arduino responsavel por fornecer os pulsos
para o giro dos servomotores.

Figura 22 — Arquitetura geral do sistema

Fonte: Autor

42

4 Avaliacao e Resultados

Este capitulo descreve as avaliagbes da estratégia proposta e seus respectivos
resultados a partir de sua implementacdo em um manipulador robdtico.

4.1 Avaliacao de custo de memoéria e processamento

O programa disp6e de duas fases fundamentais relativas ao processamento
da funcionalidade de Aprendizagem da tarefa, a primeira se chama Treinamento e a
segunda Inferéncia, foi observado um custo computacional diferente entre essas duas
fases. O experimento realizado se baseou em repetir 30 vezes cada fase do processo,
afim de obter o dados relativos ao tempo de execug¢ao de cada uma, com um conjunto
de 10 demonstrag¢des previamente fornecidas ao programa.

A Tabela 4 mostra os dados colhidos do experimento, onde a primeira coluna
representa os dados relativos ao tempo médio de execugao de cada fase em segundos,
a segunda coluna se refere ao desvio padrao, as colunas terceira e quarta estdo os
dados referentes ao Minimo e Maximo dos tempos respectivamente, e por ultimo o
Intervalo de confianca.

Tabela 4 — Resultados da analise do custo computacional

Média Desvio Padrao Minimo Maximo Intervalo de Confianca

Treinamento 2,07 0,007 2,04 2,07 (2,063 : 2,068)
Inferéncia 0,23 0,007 0,22 0,27 (0,227 : 0,232)
Total 2,30 0,011 2,27 2,34 (2,291 : 2,299)

O tempo total médio observado apenas para execugao da fase de Treinamento,
foi de pouco mais de 2 segundos, comparando com tempo total do processo de progra-
macéao do robd por demonstracéo, que € em média de 15 minutos para cada conjunto
de dez demonstragdes, essa média observada na fase de treinamento € minima, con-
tribuindo significativamente com a diminui¢gdo do tempo que o robé deve ficar parado
aguardando o treinamento.

Para a fase de Treinamento, o custo computacional € linear com o numero dos
vértices, ja para a fase de Inferéncia, o custo computacional é quadratico para o nu-
mero de vértices do grafo, provocado pela execug¢ao do Algoritmo de Dijkstra. Contudo,
podemos observar que teoricamente, o tempo relativo a fase de Inferéncia deveria ser
superior em relacado a fase de Treinamento, pois um custo computacional quadratico
tende a ser mais elevado que um linear, porém, podemos observar na tabela, que

Capitulo 4. Avaliagdo e Resultados 43

os resultados s&o invertidos, ou seja, os custos relativos a fase de Treinamento sao
superiores aos da fase de Inferéncia.

Este fato pode ser explicado, devido a maneira que o sistema foi desenvolvido,
pois para implementagcdo da fase de Treinamento, foi utilizado a biblioteca Python-
igraph, esta € um wrapper para o igraph do C/C++, enquanto para a fase de Inferéncia,
uma funcado responsavel por executar o algoritmo foi chamada diretamente, execu-
tando em uma biblioteca em C.

4.2 Avaliacao do aumento de demonstracoes

O objetivo desta avaliagao é verificar como 0 aumento do numero de demonstra-
¢bes impacta na diminuicdo das imprecisdes da tarefa realizada. Desta forma, pode-se
indicar se a abordagem PbD proposta neste trabalho é suficiente para fazer com que
um robd seja capaz de aprender como executar uma tarefa dentro dos pressupostos
determinados no Capitulo 3.

A tarefa a ser executada compreende em controlar o robd para descrever um
circuito pré-definido em um plano, de modo que o manipulador robético seja capaz de
tracar este caminho com um marcador de texto comum acoplado a sua garra. A Figura
23 mostra o circuito utilizado. Os quadrantes marcados de cinza representam o cami-
nho por onde o usuario deve manipular o robd, simulando a pintura sem o marcador
de texto. O resultado do treino do robd € a linha do marcador de texto (na cor verde).
Os quadrantes marcados de azul e amarelo representam os pontos de inicio e fim da
tarefa, respectivamente. Os quadrantes marcados de vermelho representam os erros
realizados pelo robé ao pintar um quadrado fora do caminho especifico. Na represen-
tagcdo em questao, foram calculados 6 erros. Esses erros foram tomados como métrica
de avaliacao.

Figura 23 — Representagao do circuito a ser seguido na tarefa.

O

Fonte: Autor

Capitulo 4. Avaliagdo e Resultados 44

4.2.1 Meétodo do experimento

O experimento foi realizado com 20 participantes, com cada um deles apre-
sentando demonstragdes da mesma tarefa ao rob6. Como mostrado na Figura 23, o
usuario, utilizando um joystick, manipula o rob6 para seguir o caminho em cinza im-
presso em papel ajustado a uma base fixa utilizada em todos os testes. Cada usuario
executou um numero de demonstragdes diferente dentre quatro niveis: 3, 5, 7 e 10
demonstragdes. Os usuarios nao sabiam o numero de demonstracdes que fariam, a
priori, apenas o condutor do experimento tinha essa informacgao, e este solicitava mais
demonstragdes até que fossem atingidos o total previsto para o teste. Ao fim das de-
monstragdes do usuario, o algoritmo era executado e o resultado do robé (a trilha
desenhada no papel) era armazenada para computacao dos resultados. Note-se que
ao final do experimento tem-se exatamente 5 usuarios para cada numero de demons-
tracoes.

Na escolha dos participantes ndo foram consideradas caracteristicas dos usua-
rios como sexo, escolaridade ou idade. Porém, para nivelar os usuarios no uso do joys-
tick, cada usuario teve cinco oportunidades para realizar a tarefa, antes da execugao
propria do experimento. Isto foi necessario, porque a habilidade do usuario influencia
nestes resultados.

4.2.2 Resultados Obtidos

Os resultados das demonstragdes de cada usuario em cada categoria podem
ser vistos nas figuras do Apéndice A. A Tabela 5 sumariza estes resultados apresen-
tando as estatisticas basicas dos erros em cada categoria. A partir da segunda coluna
tém-se, respectivamente: o total dos erros computados, a média de erros, o desvio pa-
drao desta média, os valores minimos e maximos e, por ultimo, na sétima coluna, estao
os valores referentes ao Intervalo de Confianga, considerando 95% de confiancga.

Tabela 5 — Estatisticas dos erros computados referentes a cada categoria do experi-
mento

Categoria Total Média Desvio Padrao Minima Maximo Intervalo de Confianga

3 50 10,0 6,60 3 18 (4,01 : 15,99)
5 22 440 3,05 0 8 (1,63 :7.17)
7 26 520 4,27 1 10 (1,33 9,07)
10 12 367 378 0 9 (0,23 ; 7,10)

Deve-se observar, em primeiro lugar, a alta variabilidade nos resultados. O coe-
ficiente de variacdo é de mais de 60% em todas as categorias, chegando a ultrapassar
100% no caso com 10 demonstragdes. Isto ocorre devido a discrepancia na habili-
dade dos usuarios. O resultado do aprendizado do robd para um dos usuarios que

Capitulo 4. Avaliagdo e Resultados 45

fez apenas 3 demonstragdes, por exemplo, alcangou apenas 3 erros. Enquanto que
o aprendizado do robd para um outro usuario com 10 demonstracdes foi de 9 erros.
Em outras palavras, um usuario com apenas 3 demonstragdes ensinou ao robé um
caminho melhor do que aquele obtido por um usuario que teve a chance de fazer mais
demonstragdes.

Em segundo lugar, pode-se notar uma melhora significativa no modo de execu-
¢ao da tarefa realizada pelo robd, provocado pelo aumento no nimero de demonstra-
coes fornecidas pelo usuario ao sistema. A diferengca mais consideravel foi em relagao
as categorias com 3 e 10 demonstragdes.

Devido a pequena quantidade de amostras (5 por categoria) utilizadas no expe-
rimento, ndo é possivel afirmar com certeza estatistica que houve redugao na média.
Os intervalos de confianca sobrepostos reforcam esta observagdo. Contudo, pode-se
observar que as trajetérias descritas pelo robd treinado com apenas 3 demonstragdes
obteve uma média de 10 erros computados, enquanto que para categoria 10, foi obser-
vado uma média de 3,6 de erros, refletindo uma diminuicado de 64% entre as categorias.

Ainda para a categoria 3, onde os cinco usuarios forneceram cada um, trés
demonstra¢des de como executar a tarefa, foi computado um total de 50 erros. Por
outro lado, os circuitos obtidos pelos aprendizados com 10 demonstra¢des apresentam
12 erros computados no total, traduzindo uma melhora de 76% na execugéo da tarefa,
quando comparado com a categoria 3.

Ao longo do experimento, observou-se ainda o tempo de execug¢ao das demons-
tracdes de cada participante. E o tempo de treino maximo foi de 15 minutos. Além disso,
outro dado interessante, é que o numero de vértices que compdem o caminho inferido
no processo de Aprendizagem, foi em média de 28 nds para um conjunto de 10 de-
monstracdes fornecidas. Assim, o robd precisa executar essa quantidade movimentos
para reproduzir a atividade pretendida. Podemos observar que essa quantidade de
movimentos esta relacionada a esta tarefa em particular, ja que esta quantidade de
movimentos depende diretamente da tarefa que o robd deve executar.

46

5 Conclusao

O presente trabalho apresentou e avaliou uma estratégia para a programacéao
por demonstragao de rob0s baseada em teoria dos grafos. A técnica se aplica a progra-
macéo de robds para tarefas repetitivas na industria e assume que o usuario demonstra
a tarefa que o robd deve executar através de um joystick, ndo necessitando que o robd
faca uso de sensores para capturar o movimento do usuario ou para certificar-se de
sua propria posicdo no ambiente.

A programacao de tarefas complexas por meio de teach pendants pode se tor-
nar morosa devido a imprecisdes introduzidas durante a fase de programacéao do robd.
Assim a estratégia proposta neste trabalho permite que o robd execute tarefas mesmo
na presencga de imperfeicbes que o préprio programador possa cometer durante a
execucgao da tarefa. Para mitigar o efeito destes erros, o usuario realiza diversas de-
monstracdes de uma mesma tarefa para que o robd consiga inferir a melhor forma de
executa-la a partir dos movimentos mais frequentes nas demonstragdes.

Para composigao da base de conhecimento do robd, assume-se que esse pos-
sui atuadores discretos. Desta maneira é possivel modelar os graus de liberdade dos
atuadores do robé em nés de um grafo de estados. Adicionalmente, as arestas deste
grafo sao criadas de acordo com as limitagdes de movimento relativas a propria estru-
tura do robé. O aprendizado ocorre quando, a cada demonstragéo feita pelo usuario,
as arestas relacionadas aos movimentos séo reforcadas. Assim, ao encontrar o maior
caminho direto, tem-se o conjunto de movimentos desejados para que o robd execute
a tarefa. Dada a complexidade do problema, utiliza-se uma heuristica para soluciona-lo
em tempo viavel.

Aplicou-se a estratégia proposta a um manipulador robético simples composto
por trés servomotores para a realizagao da tarefa de seguir com uma caneta um circuito
desenhado em um papel. Para verificar a eficacia da estratégia e os ganhos obtidos
com o aumento do numero de demonstracdes, foram realizados experimentos com um
total de 20 participantes. Cada participante executou um namero diferente de demons-
tragcdes da mesma tarefa e se verificou que a quantidade de erros média diminuiu em
64% com o aumento do numero de demonstra¢des de 3 para 10. Este experimento
também demonstrou que o tempo de treino foi no maximo de 15 minutos para um parti-
cipante que realizou 10 demonstragdes. Desta forma, é possivel observar que a técnica
proposta tem potencial para simplificar o treinamento de um robé pelo uso de um mero
joystick, sem necessidade de conhecimento de programacgao baseada em texto, além
de potencialmente reduzir o tempo com o robd parado ao evitar que o usuario tenha

Capitulo 5. Conclusao 47

que reprogramar o robd no caso de imprecisdes.

5.1 Limitacoes da proposta

Para o sistema proposto funcionar, o robé precisa possuir motores discretos, ou
seja, eles precisam ter informagdes pertinentes aos graus de configuragbdes dos angu-
los de todos os motores, sem isto, fica impossivel gerar a base de conhecimento do
sistema baseado em grafo. Outra limitagcao é o fato do robd precisar ter um computador
trabalhando em conjunto diretamente, pois nele fica a CPU para realizar a execugao
do programa bem como a unidade de memoria responsavel por manté-lo.

5.2 Trabalhos futuros

Como trabalhos futuros espera-se investigar o uso desta técnica em tipos dife-
rentes de robds para a execugao de tarefas mais complexas possivelmente comparando-
a ao uso de feach pendants. Espera-se ainda investigar heuristicas alternativas que
ampliem as possibilidade de aplicagdo da estratégia.

Uma outra proposta seria a implantagdo de uma placa Raspberry Pi no robd,
para que o programa desenvolvido execute diretamente nele, sem a necessidade de
um computador trabalhando em conjunto, integracédo de um novo joystick mais sofis-
ticado para tornar o controle do robé mais intuitivo, além de aumentar o numero de
comandos enviados para o robd diretamente do controle.

48

Referéencias

BIGGS, G.; MACDONALD, B. A survey of robot programming systems. In:
Proceedings of the Australasian conference on robotics and automation. [s.n.], 2003.
p. 1-3. Disponivel em: <http://ftp.societyofrobots.com/robottheory/Survey of Robot
Programming_Systems.pdf>. Citado 6 vezes nas paginas 13, 14, 17, 18, 19 e 20.

BILLARD, A. et al. Robot programming by demonstration. In: Springer handbook of
robotics. Springer, 2008. p. 1371-1394. Disponivel em: <http://link.springer.com/10.
1007/978-3-540-30301-5_60>. Citado 2 vezes nas paginas 22 e 23.

BOUCHARD, S. The Evolution of the Robotic Teach Pendant. 2011. Disponivel em:
<http://blog.robotiq.com/bid/29774/The-Evolution-of-the-Robotic-Teach-Pendant>.
Citado na pagina 15.

CARVALHO, M. Teoria dos Grafos, uma introdugcao. Centro, 2005. Citado 3 vezes
nas paginas 25, 26 e 30.

CAVALCANTE, Z. V.; SILVA, M. L. S. da. A Importancia da Revolucao Industrial
no mundo da tecnologia. 2011. Disponivel em: <http://rgomes.yolasite.com/
resources/A%20IMPORT%C3%82NCIA%20DA%20REVOLU%C3%87%C3%830%
20INDUSTRIAL%20NO%20MUNDO%20DA%20TECNOLOGIA.pdf>. Citado na
pagina 12.

CYPHER, A.; HALBERT, D. C. Watch what | Do: Programming by Demonstration.
[S.I.]: MIT Press, 1993. ISBN 978-0-262-03213-1. Citado 2 vezes nas paginas 21
e 22.

EKVALL, S. Grasp recognition for programming by demonstration. In: Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference
on. IEEE, 2005. p. 748-753. Disponivel em: <http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=1570207>. Citado 3 vezes nas paginas 14, 24 e 25.

EKVALL, S. Robot learning from demonstration: a task-level planning approach.
International Journal of Advanced Robotic Systems, v. 5, n. 3, p. 223-234, 2008.
Disponivel em: <http://cdn.intechopen.com/pdfs/4292.pdf>. Citado 2 vezes nas
paginas 24 e 25.

ELECTRONICS, R. R. Rapid Electronics and Education Blog: Screwdriver +
Enthusiasm = MeArm. 2016. Disponivel em: <http://rapideleceducationblog.blogspot.
com.br/2016/01/screwdriver-enthusiasm-mearm.html>. Citado na pagina 33.

FEOFILOFF, P. Exercicios de Teoria dos Grafos. 2012. Disponivel em: <http:
/larquivoescolar.org/bitstream/arquivo-e/193/1/ETG.pdf>. Citado na pagina 26.

FORBES, M. et al. Robot programming by demonstration with crowdsourced action
fixes. In: Second AAAI Conference on Human Computation and Crowdsourcing. [s.n.],
2014. Disponivel em: <http://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/
view/8975>. Citado 3 vezes nas paginas 14, 24 e 25.

http://ftp.societyofrobots.com/robottheory/Survey_of_Robot_Programming_Systems.pdf
http://ftp.societyofrobots.com/robottheory/Survey_of_Robot_Programming_Systems.pdf
http://link.springer.com/10.1007/978-3-540-30301-5_60
http://link.springer.com/10.1007/978-3-540-30301-5_60
http://blog.robotiq.com/bid/29774/The-Evolution-of-the-Robotic-Teach-Pendant
http://rgomes.yolasite.com/resources/A%20IMPORT%C3%82NCIA%20DA%20REVOLU%C3%87%C3%83O%20INDUSTRIAL%20NO%20MUNDO%20DA%20TECNOLOGIA.pdf
http://rgomes.yolasite.com/resources/A%20IMPORT%C3%82NCIA%20DA%20REVOLU%C3%87%C3%83O%20INDUSTRIAL%20NO%20MUNDO%20DA%20TECNOLOGIA.pdf
http://rgomes.yolasite.com/resources/A%20IMPORT%C3%82NCIA%20DA%20REVOLU%C3%87%C3%83O%20INDUSTRIAL%20NO%20MUNDO%20DA%20TECNOLOGIA.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570207
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570207
http://cdn.intechopen.com/pdfs/4292.pdf
http://rapideleceducationblog.blogspot.com.br/2016/01/screwdriver-enthusiasm-mearm.html
http://rapideleceducationblog.blogspot.com.br/2016/01/screwdriver-enthusiasm-mearm.html
http://arquivoescolar.org/bitstream/arquivo-e/193/1/ETG.pdf
http://arquivoescolar.org/bitstream/arquivo-e/193/1/ETG.pdf
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/view/8975
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/view/8975

Referéncias 49

GAREY, M. R.; JOHNSON, D. S. Computers and Intractability: A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979. ISBN
0-7167-1044-7. Citado na pagina 38.

GENERIC USB Gamepad / Joystick - CeX (UK): - Buy, Sell, Donate. 2016. Disponivel
em: <https://uk.webuy.com/product.php?sku=SACCJG50A#.V3fTLXUrJkU>. Citado
na pagina 34.

KHAN Academy. 2016. Disponivel em: <http://pt.khanacademy.org>. Citado na
pagina 31.

MARKOFF, J. New Wave of Deft Robots Is Changing Global Industry. The New York
Times, ago. 2012. ISSN 0362-4331. Disponivel em: <http://www.nytimes.com/2012/
08/19/business/new-wave-of-adept-robots-is-changing-global-industry.html>. Citado
na pagina 12.

MOLLARD, Y. et al. Robot programming from demonstration, feedback and transfer.
In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on. IEEE, 2015. p. 1825-1831. Disponivel em: <http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=7353615>. Citado 2 vezes nas paginas 24 e 25.

ROBOTICS, M. MeArm Robotics - Instructions. 2016. Disponivel em: <https:
/lwww.mearm.com/pages/instructions>. Citado na pagina 40.

RODRIGUES, F. A. Caracterizacao, classificagao e analise de redes complexas.
Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2007.
Citado na pagina 26.

TEIXEIRA, C. E. P. Ensinamento Rapido de Manipuladores Industriais. Tese
(Doutorado) — Universidade do Porto, 2009. Citado 2 vezes nas paginas 14 e 15.

WAHL, F. M.; THOMAS, U. Robot programming-from simple moves to complex
robot tasks. Institute for Robotics and Process Control, Technical University of
Brawnschweig, 2002. Disponivel em: <http://wwwz2.cs.siu.edu/~hexmoor/classes/
CS404-S10/Wahl.pdf>. Citado na pagina 14.

ZOLLNER, R. Programming by demonstration: dual-arm manipulation tasks for
humanoid robots. In: IROS. [s.n.], 2004. p. 479—484. Disponivel em: <https://www.
researchgate.net/profile/Ruediger_Dillmann/publication/4121774 _Programming_
by Demonstration_Dual-Arm_Manipulation_Tasks_for_Humanoid_Robots/links/
0046351c964f63c967000000.pdf>. Citado 2 vezes nas paginas 23 e 25.

https://uk.webuy.com/product.php?sku=SACCJG50A#.V3fTLXUrJkU
http://pt.khanacademy.org
http://www.nytimes.com/2012/08/19/business/new-wave-of-adept-robots-is-changing-global-industry.html
http://www.nytimes.com/2012/08/19/business/new-wave-of-adept-robots-is-changing-global-industry.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7353615
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7353615
https://www.mearm.com/pages/instructions
https://www.mearm.com/pages/instructions
http://www2.cs.siu.edu/~hexmoor/classes/CS404-S10/Wahl.pdf
http://www2.cs.siu.edu/~hexmoor/classes/CS404-S10/Wahl.pdf
https://www.researchgate.net/profile/Ruediger_Dillmann/publication/4121774_Programming_by_Demonstration_Dual-Arm_Manipulation_Tasks_for_Humanoid_Robots/links/0046351c964f63c967000000.pdf
https://www.researchgate.net/profile/Ruediger_Dillmann/publication/4121774_Programming_by_Demonstration_Dual-Arm_Manipulation_Tasks_for_Humanoid_Robots/links/0046351c964f63c967000000.pdf
https://www.researchgate.net/profile/Ruediger_Dillmann/publication/4121774_Programming_by_Demonstration_Dual-Arm_Manipulation_Tasks_for_Humanoid_Robots/links/0046351c964f63c967000000.pdf
https://www.researchgate.net/profile/Ruediger_Dillmann/publication/4121774_Programming_by_Demonstration_Dual-Arm_Manipulation_Tasks_for_Humanoid_Robots/links/0046351c964f63c967000000.pdf

A Apéndice

A.1 Testes da Categoria 3

50

Apéndice A. Apéndice

51

A.2 Testes da Categoria 5

Apéndice A. Apéndice

52

Apéndice A. Apéndice

53

A.3 Testes da Categoria 7

Apéndice A. Apéndice

54

A.4 Testes da Categoria 10

Apéndice A. Apéndice

	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	A importância da robótica
	Programação por demonstração
	Justificativa e motivação
	Objetivos
	Organização do trabalho

	Referencial Teórico
	Programação de robôs
	Sistemas de Programação Manual
	Sistemas de Programação Automática

	Características dos sistemas PbD
	Programming by Demonstration na Robótica
	Sistemas robóticos baseados em PbD

	Teoria dos Grafos

	Proposta
	Modelos Robóticos
	Modelo da Base de Conhecimento
	Processo proposto
	Coleta
	Aprendizagem
	Execução

	Implementação da proposta

	Avaliação e Resultados
	Avaliação de custo de memória e processamento
	Avaliação do aumento de demonstrações
	Método do experimento
	Resultados Obtidos

	Conclusão
	Limitações da proposta
	Trabalhos futuros

	Referências
	Apêndice
	Testes da Categoria 3
	Testes da Categoria 5
	Testes da Categoria 7
	Testes da Categoria 10

